Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huw M. Nash is active.

Publication


Featured researches published by Huw M. Nash.


Current Biology | 1996

Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily

Huw M. Nash; Steven D. Bruner; Orlando D. Schärer; Tomohiko Kawate; Theresa A. Addona; Eric Spooner; William S. Lane; Gregory L. Verdine

BACKGROUND Reactive oxygen species, ionizing radiation, and other free radical generators initiate the conversion of guanine (G) residues in DNA to 8-oxoguanine (OG), which is highly mutagenic as it preferentially mispairs with adenine (A) during replication. Bacteria counter this threat with a multicomponent system that excises the lesion, corrects OG:A mispairs and cleanses the nucleotide precursor pool of dOGTP. Although biochemical evidence has suggested the existence of base-excision DNA repair proteins specific for OG in eukaryotes, little is known about these proteins. RESULTS Using substrate-mimetic affinity chromatography followed by a mechanism-based covalent trapping procedure, we have isolated a base-excision DNA repair protein from Saccharomyces cerevisiae that processes OG opposite cytosine (OG:C) but acts only weakly on OG:A. A search of the yeast genome database using peptide sequences from the protein identified a gene, OGG1, encoding a predicted 43 kDa (376 amino acid) protein, identical to one identified independently by complementation cloning. Ogg1 has OG:C-specific base-excision DNA repair activity and also intrinsic beta-lyase activity, which proceeds through a Schiff base intermediate. Targeted disruption of the OGG1 gene in yeast revealed a second OG glycosylase/lyase protein, tentatively named Ogg2, which differs from Ogg1 in that it preferentially acts on OG:G. CONCLUSIONS S. cerevisiae has two OG-specific glycosylase/lyases, which differ significantly in their preference for the base opposite the lesion. We suggest that one of these, Ogg1, is closely related in overall three-dimensional structure to Escherichia coli endonuclease III (endo III), a glycosylase/lyase that acts on fragmented and oxidatively damaged pyrimidines. We have recently shown that AlkA, a monofunctional DNA glycosylase that acts on alkylated bases, is structurally homologous to endo III. We have now identified a shared active site motif amongst these three proteins. Using this motif as a protein database searching tool, we find that it is present in a number of other base-excision DNA repair proteins that process diverse lesions. Thus, we propose the existence of a DNA glycosylase superfamily, members of which possess a common fold yet act upon remarkably diverse lesions, ranging from UV photoadducts to mismatches to alkylated or oxidized bases.


Current Biology | 1997

A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer

Rongzhen Lu; Huw M. Nash; Gregory L. Verdine

BACKGROUND Guanine residues in the genome are vulnerable to attack by free radicals and reactive oxygen species. A major lesion thus produced, 8-oxoguanine (OG), causes mutations by mis-pairing with adenine during replication. In bacteria and budding yeast, OG is removed from the genome through the action of base-excision DNA repair (BER) enzymes, which catalyze expulsion of the aberrant base and excision of its sugar moiety from the DNA backbone. Although OG is known to be produced in and cleansed from mammalian genomes, the enzymes responsible for OG repair in these cells have remained elusive. RESULTS Here, we report the cloning and biochemical characterization of mammalian BER enzymes that specifically target OG residues in DNA. These 8-oxoguanine DNA glycosylases, hOgg1 (human) and mOgg1 (murine), are homologous to each other and to yeast Ogg1. They also contain an active site motif - the Helix-hairpin-Helix, Gly/Pro-rich-Asp motif - characteristic of a superfamily of BER proteins with a similar core fold and active site geometry. Both hOgg1 and mOgg1 exhibit exquisite selectivity for the base opposite OG in DNA, operating with high efficiency only on OG base-paired to cytosine. Furthermore, hOgg1 and mOgg1 are unable to process a panel of alternative lesions, including 8-oxoadenine, yet bind with high affinity to synthetic abasic site analogs. The proteins operate through a classical glycosylase/lyase catalytic mechanism; mutation of a catalytically essential lysine residue results in loss of catalytic potency but retention of binding to OG-containing oligonucleotides. The hOGG1 gene is localized on the short arm of chromosome 3 (3p25/26) in a region commonly deleted in cancers. CONCLUSIONS These results conclusively establish the existence and identity of an 8-oxoguanine DNA glycosylase/lyase in human and murine cells, completing the triad of proteins that together protect mammals from the genotoxic effects of guanine oxidation. The observation that at least one allele of hOGG1 is commonly deleted in cancer cells suggests that such cells may possess a reduced capacity to counter the mutagenic effects of reactive oxygen species, a deficiency that could increase their overall genomic instability. This speculation is fueled by recent observations that cells constitutively active for the Ras/Raf pathway constitutively produce high levels of superoxide, a known generator of OG.


Chemistry & Biology | 1997

The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOgg1: direct identification, ablation and chemical reconstitution

Huw M. Nash; Rongzhen Lu; William S. Lane; Gregory L. Verdinel

BACKGROUND Base-excision DNA repair (BER) is the principal pathway responsible for the removal of aberrant, genotoxic bases from the genome and restoration of the original sequence. Key components of the BER pathway are DNA glycosylases, enzymes that recognize aberrant bases in the genome and catalyze their expulsion. One major class of such enzymes, glycosylase/lyases, also catalyze scission of the DNA backbone following base expulsion. Recent studies indicate that the glycosylase and lyase functions of these enzymes are mechanistically unified through a common amine-bearing residue on the enzyme, which acts as both the electrophile that displaces the aberrant base and an electron sink that facilitates DNA strand scission through imine (Schiff base)/conjugate elimination chemistry. The identity of this critical amine-bearing residue has not been rigorously established for any member of a superfamily of BER glycosylase/lyases. RESULTS Here, we report the identification of the active-site amine of the human 8-oxoguanine DNA glycosylase (hOgg1), a human BER superfamily protein that repairs the mutagenic 8-oxoguanine lesion in DNA. We employed Edman sequencing of an active-site peptide irreversibly linked to substrate DNA to identify directly the active-site amine of hOgg1 as the epsilon-NH2 group of Lys249. In addition, we observed that the repair-inactive but recognition-competent Cys249 mutant (Lys249-->Cys) of hOgg1 can be functionally rescued by alkylation with 2-bromoethylamine, which functionally replaces the lysine residue by generating a gamma-thia-lysine. CONCLUSIONS This study provides the first direct identification of the active-site amine for any DNA glycosylase/lyase belonging to the BER superfamily, members of which are characterized by the presence of a helix-hairpin-helix-Gly/Pro-Asp active-site motif. The critical lysine residue identified here is conserved in all members of the BER superfamily that exhibit robust glycosylase/lyase activity. The ability to trigger the catalytic activity of the Lys249-->Cys mutant of hOgg1 by treatment with the chemical inducer 2-bromoethylamine may permit snapshots to be taken of the enzyme acting on its substrate and could represent a novel strategy for conditional activation of catalysis by hOgg1 in cells.


Journal of Biological Chemistry | 1998

Specific Binding of a Designed Pyrrolidine Abasic Site Analog to Multiple DNA Glycosylases

Orlando D. Schärer; Huw M. Nash; Josef Jiricny; Jacques Laval; Gregory L. Verdine

In the base excision DNA repair pathway, DNA glycosylases recognize damaged bases in DNA and catalyze their excision through hydrolysis of the N-glycosidic bond. Attempts to understand the structural basis for DNA damage recognition by DNA glycosylases have been hampered by the short-lived association of these enzymes with their DNA substrates. To overcome this problem, we have employed an approach involving the design and synthesis of inhibitors that form stable complexes with DNA glycosylases, which can then be studied biochemically and structurally. We have previously reported that double-stranded DNA containing a pyrrolidine abasic site analog (PYR) forms an extremely stable complex with the DNA glycosylase AlkA and potently inhibits the reaction catalyzed by the enzyme (Schärer, O. D., Ortholand, J.-Y., Ganesan, A., Ezaz-Nikpay, K., and Verdine, G. L. (1995) J. Am. Chem. Soc.117, 6623–6624). Here we investigate the interaction of this inhibitor with a variety of additional DNA glycosylases. With the exception of uracil DNA glycosylase all the glycosylases tested bind specifically to PYR-containing oligonucleotides. By comparing the interaction of DNA glycosylases with PYR and the structurally related tetrahydrofuran abasic site analog, we assess the importance of the positively charged ammonium group of the pyrrolidine in binding to the active site of these enzymes. Such a general inhibitor of DNA glycosyases provides a valuable tool to study stable complexes of these enzymes bound to substrate-like molecules.


Drug Discovery Today | 2000

Chemical ligands, genomics and drug discovery

George R. Lenz; Huw M. Nash; Satish Jindal

The sequencing of the human genome and numerous pathogen genomes has resulted in an explosion of potential drug targets. These targets represent both an unprecedented opportunity and a technological challenge for the pharmaceutical industry. A new strategy is required to initiate small-molecule drug discovery with sets of incompletely characterized, disease-associated proteins. One such strategy is the early application of combinatorial chemistry and other technologies to the discovery of bioactive small-molecule ligands that act on candidate drug targets. Therapeutically active ligands serve to concurrently validate a target and provide lead structures for downstream drug development, thereby accelerating the drug discovery process.


Current Biology | 1998

Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway

Steven D. Bruner; Huw M. Nash; William S. Lane; Gregory L. Verdine

BACKGROUND Transversion mutations are caused by 8-oxoguanine (OG), a DNA lesion produced by the spontaneous oxidation of guanine nucleotides, which mis-pairs with adenine during replication. Resistance to this mutagenic threat is mediated by the GO system, the components of which are functionally conserved in bacteria and mammals. To date, only one of three GO system components has been identified in the budding yeast Saccharomyces cerevisiae, namely the OG:C-specific glycosylase/lyase yOgg1. Furthermore, S. cerevisiae has been reported to contain a unique glycosylase/lyase activity, yOgg2, which excises OG residues opposite adenines. Paradoxically, according to the currently accepted model, yOgg2 activity should increase the mutagenicity of OG lesions. Here we report the isolation of yOgg2 and the elucidation of its role in oxidative mutagenesis. RESULTS Borohydride-dependent cross-linking using an OG-containing oligonucleotide substrate led to the isolation of yOgg1 and a second protein, Ntg1, which had previously been shown to process oxidized pyrimidines in DNA. We demonstrate that Ntg1 has OG-specific glycosylase/lyase activity indistinguishable from that of yOgg2. Targeted disruption of the NTG1 gene resulted in complete loss of yOgg2 activity and yeast lacking NTG1 had an elevated rate of A:T to C:G transversions. CONCLUSIONS The Ntg1 and yOgg2 activities are encoded by a single gene. We propose that yOgg2 has evolved to process OG:A mis-pairs that have arisen through mis-incorporation of 8-oxo-dGTP during replication. Thus, the GO system in S. cerevisiae is fundamentally distinct from that in bacteria and mammals.


Journal of Biomolecular Screening | 2006

Discovery and Characterization of Orthosteric and Allosteric Muscarinic M2 Acetylcholine Receptor Ligands by Affinity Selection-Mass Spectrometry

Charles E. Whitehurst; Naim Nazef; D. Allen Annis; Yongmin Hou; Peter Spacciapoli; Zhiping Yao; Michael R. Ziebell; Cliff C. Cheng; Gerald W. Shipps; Jason S. Felsch; David Lau; Huw M. Nash

Screening assays using target-based affinity selection coupled with high-sensitivity detection technologies to identify small-molecule hits from chemical libraries can provide a useful discovery approach that complements traditional assay systems. Affinity selection-mass spectrometry (AS-MS) is one such methodology that holds promise for providing selective and sensitive high-throughput screening platforms. Although AS-MS screening platforms have been used to discover small-molecule ligands of proteins from many target families, they have not yet been used routinely to screen integral membrane proteins. The authors present a proof-of-concept study using size exclusion chromatography coupled to AS-MS to perform a primary screen for small-molecule ligands of the purified muscarinic M2 acetylcholine receptor, a G-protein-coupled receptor. AS-MS is used to characterize the binding mechanisms of 2 newly discovered ligands. NGD-3350 is a novel M2-specific orthosteric antagonist of M2 function. NGD-3366 is an allosteric ligand with binding properties similar to the allosteric antagonist W-84, which decreases the dissociation rate of N-methyl-scopolamine from the M2 receptor. Binding properties of the ligands discerned from AS-MS assays agree with those from in vitro biochemical assays. The authors conclude that when used with appropriate small-molecule libraries, AS-MS may provide a useful high-throughput assay system for the discovery and characterization of all classes of integral membrane protein ligands, including allosteric modulators.


Bioorganic & Medicinal Chemistry | 2012

STAT6 phosphorylation inhibitors block eotaxin-3 secretion in bronchial epithelial cells

Li Zhou; Tomohiko Kawate; Xiaorong Liu; Young Bae Kim; Yajuan Zhao; Guohong Feng; Julian Banerji; Huw M. Nash; Charles Whitehurst; Satish Jindal; Arshad Siddiqui; Brian Seed; Jia Liu Wolfe

The STAT6 (signal transducer and activator of transcription 6) protein facilitates T-helper cell 2 (Th2) mediated responses that control IgE-mediated atopic diseases such as asthma. We have identified compounds that bind to STAT6 and inhibit STAT6 tyrosine phosphorylation induced by IL-4. In the bronchial epithelial cell line BEAS-2B, compound (R)-84 inhibits the secretion of eotaxin-3, a chemokine eliciting eosinophil infiltration. (R)-84 appears to prevent STAT6 from assuming the active dimer configuration by directly binding the protein and inhibiting tyrosine phosphorylation.


Biochemistry | 1992

Zinc binding by the methylation signaling domain of the Escherichia coli Ada protein.

Lawrence C. Myers; Michael P. Terranova; Huw M. Nash; Michelle A. Markus; Gregory L. Verdine


Biochemistry | 1989

Mutagenesis of the cysteines in the metalloregulatory protein MerR indicates that a metal-bridged dimer activates transcription

Lisa M. Shewchuk; Gregory L. Verdine; Huw M. Nash; Christopher T. Walsh

Collaboration


Dive into the Huw M. Nash's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward A. Wintner

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge