Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hwanseong Jeong is active.

Publication


Featured researches published by Hwanseong Jeong.


Optics Express | 2014

Mode-locking of Er-doped fiber laser using a multilayer MoS2 thin film as a saturable absorber in both anomalous and normal dispersion regimes.

Reza Khazaeizhad; Sahar Hosseinzadeh Kassani; Hwanseong Jeong; Dong-Il Yeom; Kyunghwan Oh

Application of a multilayer Molybdenum Disulfide (MoS2) thin film as a saturable absorber was experimentally demonstrated by realizing a stable and robust passive mode-locked fiber laser via the evanescent field interaction between the light and the film. The MoS2 film was grown by chemical vapor deposition, and was then transferred to a side polished fiber by a lift-off method. Intensity-dependent optical transmission through the MoS2 thin film on side polished fiber was experimentally observed showing efficient saturable absorption characteristics. Using erbium doped fiber as an optical gain medium, we built an all-fiber ring cavity, where the MoS2 film on the side polished fiber was inserted as a saturable absorber. Stable dissipative soliton pulse trains were successfully generated in the normal dispersion regime with a spectral bandwidth of 23.2 nm and the pulse width of 4.98 ps. By adjusting the total dispersion in the cavity, we also obtained soliton pulses with a width of 637 fs in the anomalous dispersion regime near the lasing wavelength λ = 1.55 μm. Detailed and systematic experimental comparisons were made for stable mode locking of an all-fiber laser cavity in both the normal and anomalous regimes.


Optical Materials Express | 2015

All-fiber Er-doped Q-Switched laser based on Tungsten Disulfide saturable absorber

Sahar Hosseinzadeh Kassani; Reza Khazaeinezhad; Hwanseong Jeong; Tavakol Nazari; Dong-Il Yeom; Kyunghwan Oh

We demonstrated a Q-switched fiber laser based on Tungsten Disulfide (WS2) saturable absorber. The WS2 nano-sheets were prepared by liquid phase exfoliation method and the saturable absorber was fabricated by spin-coating of few-layer WS2 nano-sheets on a side-polished fiber for pulsed operation of a fiber laser. By inserting the absorber into an Erbium-doped fiber laser cavity pumped by a 980 nm laser diode, a stable Q-switched laser operation was achieved with a tunable repetition rates from 82 kHz to 134 kHz depending on the applied pump power. The properties of the deposited WS2 film was examined using scanning electron microscopic (SEM) and atomic force microscope (AFM). Detailed optical properties of the laser output are also discussed.


Nature Communications | 2015

Active control of all-fibre graphene devices with electrical gating

Eun Jung Lee; Sun Young Choi; Hwanseong Jeong; Nam Hun Park; Woongbin Yim; Mi Hye Kim; Jaeku Park; Suyeon Son; Sukang Bae; Sang-Jin Kim; Kwanil Lee; Yeong Hwan Ahn; Kwang Jun Ahn; Byung Hee Hong; Ji-Yong Park; Fabian Rotermund; Dong-Il Yeom

Active manipulation of light in optical fibres has been extensively studied with great interest because of its compatibility with diverse fibre-optic systems. While graphene exhibits a strong electro-optic effect originating from its gapless Dirac-fermionic band structure, electric control of all-fibre graphene devices remains still highly challenging. Here we report electrically manipulable in-line graphene devices by integrating graphene-based field effect transistors on a side-polished fibre. Ion liquid used in the present work critically acts both as an efficient gating medium with wide electrochemical windows and transparent over-cladding facilitating light–matter interaction. Combined study of unique features in gate-variable electrical transport and optical transition at monolayer and randomly stacked multilayer graphene reveals that the device exhibits significant optical transmission change (>90%) with high efficiency-loss figure of merit. This subsequently modifies nonlinear saturable absorption characteristics of the device, enabling electrically tunable fibre laser at various operational regimes. The proposed device will open promising way for actively controlled optoelectronic and nonlinear photonic devices in all-fibre platform with greatly enhanced graphene–light interaction.


Laser Physics Letters | 2014

All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber

Sun Young Choi; Hwanseong Jeong; Byung Hee Hong; Fabian Rotermund; Dong-Il Yeom

We demonstrate a high-power dissipative soliton fiber laser by employing an evanescent field-coupled graphene saturable absorber (SA). In the SA, a polymer supporter enhances the nonlinear interaction between the guided mode and the high-quality graphene layers, which enables high-power operation of the mode-locked laser in the normal dispersion regime of the laser cavity. A self-started dissipative soliton fiber laser stably generates pulses with a spectral bandwidth of 10.4 nm at 1565 nm. The linearly chirped pulse of the laser output has a pulse duration of 13.8 ps at a repetition rate of 16.99 MHz. The maximum output power achieved is 174 mW using a single-mode pump laser diode with an applied power of 785 mW. The pulse energy is estimated to be 10.2 nJ; we believe this is the highest pulse energy ever reported for an Er-doped dissipative soliton fiber laser oscillator using a graphene SA.


Optics Express | 2014

All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber

Hwanseong Jeong; Sun Young Choi; Fabian Rotermund; Yong-Ho Cha; Do-Young Jeong; Dong-Il Yeom

We demonstrate a dissipative soliton fiber laser with high pulse energy (>30 nJ) based on a single-walled carbon nanotube saturable absorber (SWCNT-SA). In-line SA that evanescently interacts with the high quality SWCNT/polymer composite film was fabricated under optimized conditions, increasing the damage threshold of the saturation fluence of the SA to 97 mJ/cm(2). An Er-doped mode-locked all-fiber laser operating at net normal intra-cavity dispersion was built including the fabricated in-line SA. The laser stably delivers linearly chirped pulses with a pulse duration of 12.7 ps, and exhibits a spectral bandwidth of 12.1 nm at the central wavelength of 1563 nm. Average power of the laser output is measured as 335 mW at an applied pump power of 1.27 W. The corresponding pulse energy is estimated to be 34 nJ at the fundamental repetition rate of 9.80 MHz; this is the highest value, to our knowledge, reported in all-fiber Er-doped mode-locked laser using an SWCNT-SA.


IEEE Photonics Technology Letters | 2015

Ultrafast Pulsed All-Fiber Laser Based on Tapered Fiber Enclosed by Few-Layer WS 2 Nanosheets

Reza Khazaeinezhad; Sahar Hosseinzadeh Kassani; Hwanseong Jeong; Kyung Jun Park; Byoung Yoon Kim; Dong-Il Yeom; Kyunghwan Oh

We demonstrate all-fiber mode-locked laser based on a tapered optical fiber saturable absorber (SA) enclosed in tungsten disulfide (WS2) nanosheets. Tapered fibers were fabricated using the standard flame brushing method to an interaction length of 3 mm with waist diameters of 10 and 15 μm. WS2 nanosheets were prepared via a liquid phase exfoliation method to form a uniform dispersion. Subsequently, the WS2 nanosheets were optically deposited along the interaction length of the tapered fibers by evanescent field interactions. We built a ring laser including the fabricated mode-lockers. The SA with a 10-μm taper diameter delivers the pulses with a pulse duration of 369 fs and 3-dB spectral bandwidth of 7.5 nm; on the other hand, the output pulses using the mode-locker with 15-μm waist diameter were found to have 563-fs pulse duration and 5.2 nm of 3-dB bandwidth. It is shown that the smaller waist diameter of tapered fiber causes wider spectral bandwidth of the ultrafast pulses and narrower 3-dB bandwidth.


Journal of Lightwave Technology | 2015

Femtosecond Soliton Pulse Generation Using Evanescent Field Interaction Through Tungsten Disulfide (WS 2 ) Film

Reza Khazaeinezhad; Sahar Hosseinzadeh Kassani; Hwanseong Jeong; Dong Il Yeom; Kyunghwan Oh

We investigated nonlinear optical characteristics of Tungsten disulfide (WS2) films and experimentally demonstrated their high potential for application as nonlinear saturable absorbers in passively mode-locked fiber lasers. Side polished fiber (SPF) was fabricated and WS2 film was overlaid to provide an efficient evanescent field interaction. The WS2 film was prepared using two methods: liquid phase exfoliation to form few-layer nano-sheets, and chemical vapor deposition (CVD) to grow uniform multilayer WS2 on a SiO2 substrate. Two SPF saturable absorbers were prepared by either spin coating WS2 solution or lifting off the multilayer CVD WS2 on SPF. An all-fiber ring cavity was built and the WS2 film overlaid on SPF was employed as a mode locker along with Er-doped fiber as a gain medium. Using the spin-coated WS2 SPF, stable soliton-like pulses were generated with a spectral width of 5.6 nm and 467 fs pulse duration. The fiber laser cavity containing CVD WS2 SPF generated a transform-limited soliton pulse train with a spectral width of 8.23 nm and a pulse duration of 332 fs. Our study confirmed a high potential of WS2 film as a novel 2-D nonlinear optical material for laser applications.


Optics Communications | 2002

Continuous wave single transverse mode laser oscillation in a Nd-doped large core double clad fiber cavity with concatenated adiabatic tapers

Hwanseong Jeong; S. Choi; Kyunghwan Oh

Abstract A new cavity design for the clad-pumped fiber laser (CPFL) was proposed and experimentally demonstrated in a Nd-doped silica fiber with the single transverse mode output and an enhancement in the slope efficiency for butt-coupled end pumping. In a fiber cavity two concatenated adiabatic rectangular tapers were formed to remove the optical feedback in higher order modes as well as to provide a low splice loss to standard single mode fibers. Mode propagation along the composite cavity was theoretically analyzed using beam propagation method and continuous wave oscillation in the LP 01 mode at 1.06 μm was achieved with the output power over 1.3 W at the pump power of 3.67 W.


Optics Express | 2015

Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking

Nam Hun Park; Hwanseong Jeong; Sun Young Choi; Mi Hye Kim; Fabian Rotermund; Dong-Il Yeom

We demonstrate an efficient all-fiber saturable absorber (SA) that evanescently interacts with a graphene monolayer. Strong nonlinear interaction between the graphene sheet and evanescent wave was realized in both experiments and numerical calculations by employing an over-cladding structure on high-quality monolayer graphene that uniformly covered the side-polished fiber. A passively mode-locked Er-doped fiber laser was built, including our in-line graphene SA, which stably generated ultrashort pulses with pulse duration of 377 fs at a repetition rate of 37.7 MHz. The corresponding 3-dB spectral bandwidth of the laser was measured to be 8.6 nm at the central wavelength of 1607.7 nm. We also experimentally observed that the spectral bandwidth and pulse duration of the laser output could be controlled by proper selection of the refractive index of the over-cladding material on the monolayer-graphene SA.


Optics Express | 2013

Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber

Hwanseong Jeong; Sun Young Choi; Fabian Rotermund; Dong-Il Yeom

We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output.

Collaboration


Dive into the Hwanseong Jeong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge