Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyekyung P. Cho is active.

Publication


Featured researches published by Hyekyung P. Cho.


Science | 2014

Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator

Huixian Wu; Chong Wang; Karen J. Gregory; Gye Won Han; Hyekyung P. Cho; Yan Xia; Colleen M. Niswender; Vsevolod Katritch; Jens Meiler; Vadim Cherezov; P. Jeffrey Conn; Raymond C. Stevens

Completing the Set G protein–coupled receptors (GPCRs) are membrane proteins that transduce extracellular signals to activate diverse signaling pathways. Significant insight into GPCR function has come from structures of three of four classes of GPCRs—A, B, and Frizzled. Wu et al. (p. 58, published online 6 March) complete the picture by reporting the structure of metabotropic glutamate receptor 1, a class C GPCR. The structure shows differences in the seven-transmembrane (7TM) domain between class C and other classes; however, the overall fold is preserved. Class C GPCRs are known to form dimers through their extracellular domains; however, the structure suggests additional interactions between the 7TM domains mediated by cholesterol. Insight into the activation mechanism of a human neuronal G protein–coupled receptor. The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein–coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate’s interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.


Nature Chemical Biology | 2009

Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness

Sarah A. Scott; Paige E. Selvy; Jason R. Buck; Hyekyung P. Cho; Tracy L. Criswell; Ashley L Thomas; Michelle D. Armstrong; Carlos L. Arteaga; Craig W. Lindsley; H. Alex Brown

Phospholipase D (PLD) is an essential enzyme responsible for the production of the lipid second messenger phosphatidic acid. Phosphatidic acid participates in both G protein-coupled receptor and receptor tyrosine kinase signal transduction networks. The lack of potent and isoform-selective inhibitors has limited progress in defining the cellular roles of PLD. We used a diversity-oriented synthetic approach and developed a library of PLD inhibitors with considerable pharmacological characterization. Here we report the rigorous evaluation of that library, which contains highly potent inhibitors, including the first isoform-selective PLD inhibitors. Specific members of this series inhibit isoforms with >100-fold selectivity both in vitro and in cells. A subset of inhibitors was shown to block invasiveness in metastatic breast cancer models. These findings demonstrate the power of diversity-oriented synthesis combined with biochemical assays and mass spectrometric lipid profiling of cellular responses to develop the first isoform-selective PLD inhibitors--a new class of antimetastatic agents.


Molecular Pharmacology | 2012

Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function.

Meredith J. Noetzel; Jerri M. Rook; Paige N. Vinson; Hyekyung P. Cho; Emily Days; Ya Zhou; Alice L. Rodriguez; Hilde Lavreysen; Shaun R. Stauffer; Colleen M. Niswender; Zixiu Xiang; J. Scott Daniels; Carrie K. Jones; Craig W. Lindsley; C. David Weaver; P. Jeffrey Conn

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu5 PAMs act as pure PAMs, only potentiating mGlu5 responses to glutamate whereas others [allosteric agonists coupled with PAM activity (ago-PAMs)] potentiate responses to glutamate and have intrinsic allosteric agonist activity in mGlu5-expressing cell lines. All mGlu5 PAMs previously shown to have efficacy in animal models act as ago-PAMs in cell lines, raising the possibility that allosteric agonist activity is critical for in vivo efficacy. We have now optimized novel mGlu5 pure PAMs that are devoid of detectable agonist activity and structurally related mGlu5 ago-PAMs that activate mGlu5 alone in cell lines. Studies of mGlu5 PAMs in cell lines revealed that ago-PAM activity is dependent on levels of mGlu5 receptor expression in human embryonic kidney 293 cells, whereas PAM potency is relatively unaffected by levels of receptor expression. Furthermore, ago-PAMs have no agonist activity in the native systems tested, including cortical astrocytes and subthalamic nucleus neurons and in measures of long-term depression at the hippocampal Schaffer collateral-CA1 synapse. Finally, studies with pure PAMs and ago-PAMs chemically optimized to provide comparable CNS exposure revealed that both classes of mGlu5 PAMs have similar efficacy in a rodent model predictive of antipsychotic activity. These data suggest that the level of receptor expression influences the ability of mGlu5 PAMs to act as allosteric agonists in vitro and that ago-PAM activity observed in cell-based assays may not be important for in vivo efficacy.


Biological Psychiatry | 2013

Unique signaling profiles of positive allosteric modulators of metabotropic glutamate receptor subtype 5 determine differences in in vivo activity

Jerri M. Rook; Meredith J. Noetzel; Wendy A. Pouliot; Thomas M. Bridges; Paige N. Vinson; Hyekyung P. Cho; Ya Zhou; Rocco D. Gogliotti; Jason Manka; Karen J. Gregory; Shaun R. Stauffer; F. Edward Dudek; Zixiu Xiang; Colleen M. Niswender; J. Scott Daniels; Carrie K. Jones; Craig W. Lindsley; P. Jeffrey Conn

BACKGROUND Metabotropic glutamate receptor subtype 5 (mGlu5) activators have emerged as a novel approach to the treatment of schizophrenia. Positive allosteric modulators (PAMs) of mGlu5 have generated tremendous excitement and fueled major drug discovery efforts. Although mGlu5 PAMs have robust efficacy in preclinical models of schizophrenia, preliminary reports suggest that these compounds may induce seizure activity. Prototypical mGlu5 PAMs do not activate mGlu5 directly but selectively potentiate activation of mGlu5 by glutamate. This mechanism may be critical to maintaining normal activity-dependence of mGlu5 activation and achieving optimal in vivo effects. METHODS Using specially engineered mGlu5 cell lines incorporating point mutations within the allosteric and orthosteric binding sites, as well as brain slice electrophysiology and in vivo electroencephalography and behavioral pharmacology, we found that some mGlu5 PAMs have intrinsic allosteric agonist activity in the absence of glutamate. RESULTS Both in vitro mutagenesis and in vivo pharmacology studies demonstrate that VU0422465 is an agonist PAM that induces epileptiform activity and behavioral convulsions in rodents. In contrast, VU0361747, an mGlu5 PAMs optimized to eliminate allosteric agonist activity, has robust in vivo efficacy and does not induce adverse effects at doses that yield high brain concentrations. CONCLUSIONS Loss of the absolute dependence of mGlu5 PAMs on glutamate release for their activity can lead to severe adverse effects. The finding that closely related mGlu5 PAMs can differ in their intrinsic agonist activity provides critical new insights that is essential for advancing these molecules through clinical development for treatment of schizophrenia.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery and optimization of a novel, selective and brain penetrant M1 positive allosteric modulator (PAM): the development of ML169, an MLPCN Probe

Paul R Reid; Thomas M. Bridges; Douglas J. Sheffler; Hyekyung P. Cho; L. Michelle Lewis; Emily Days; J. Scott Daniels; Carrie K. Jones; Colleen M. Niswender; C. David Weaver; P. Jeffrey Conn; Craig W. Lindsley; Michael R. Wood

This Letter describes a chemical lead optimization campaign directed at VU0108370, a weak M(1) PAM hit with a novel chemical scaffold from a functional HTS screen within the MLPCN. An iterative parallel synthesis approach rapidly established SAR for this series and afforded VU0405652 (ML169), a potent, selective and brain penetrant M(1) PAM with an in vitro profile comparable to the prototypical M(1) PAM, BQCA, but with an improved brain to plasma ratio.


The Journal of Neuroscience | 2012

Novel allosteric agonists of M1 muscarinic acetylcholine receptors induce brain region-specific responses that correspond with behavioral effects in animal models.

Gregory J. Digby; Meredith J. Noetzel; Michael Bubser; Thomas J. Utley; Adam G. Walker; Nellie Byun; Evan P. Lebois; Zixiu Xiang; Douglas J. Sheffler; Hyekyung P. Cho; Albert A. Davis; N.E. Nemirovsky; Sarah E. Mennenga; Bryan W. Camp; Heather A. Bimonte-Nelson; Jacob Bode; K. Italiano; Ryan D. Morrison; Daniels Js; Colleen M. Niswender; M.F. Olive; Craig W. Lindsley; Carrie K. Jones; P.J. Conn

M1 muscarinic acetylcholine receptors (mAChRs) represent a viable target for treatment of multiple disorders of the central nervous system (CNS) including Alzheimers disease and schizophrenia. The recent discovery of highly selective allosteric agonists of M1 receptors has provided a major breakthrough in developing a viable approach for the discovery of novel therapeutic agents that target these receptors. Here we describe the characterization of two novel M1 allosteric agonists, VU0357017 and VU0364572, that display profound differences in their efficacy in activating M1 coupling to different signaling pathways including Ca2+ and β-arrestin responses. Interestingly, the ability of these agents to differentially activate coupling of M1 to specific signaling pathways leads to selective actions on some but not all M1-mediated responses in brain circuits. These novel M1 allosteric agonists induced robust electrophysiological effects in rat hippocampal slices, but showed lower efficacy in striatum and no measureable effects on M1-mediated responses in medial prefrontal cortical pyramidal cells in mice. Consistent with these actions, both M1 agonists enhanced acquisition of hippocampal-dependent cognitive function but did not reverse amphetamine-induced hyperlocomotion in rats. Together, these data reveal that M1 allosteric agonists can differentially regulate coupling of M1 to different signaling pathways, and this can dramatically alter the actions of these compounds on specific brain circuits important for learning and memory and psychosis.


Bioorganic & Medicinal Chemistry Letters | 2010

Chemical lead optimization of a pan Gq mAChR M1, M3, M5 positive allosteric modulator (PAM) lead. Part I: Development of the first highly selective M5 PAM

Thomas M. Bridges; J. Phillip Kennedy; Hyekyung P. Cho; Micah L. Breininger; Patrick R. Gentry; Corey R. Hopkins; P. Jeffrey Conn; Craig W. Lindsley

This Letter describes a chemical lead optimization campaign directed at VU0238429, the first M(5)-preferring positive allosteric modulator (PAM), discovered through analog work around VU0119498, a pan G(q) mAChR M(1), M(3), M(5) PAM. An iterative library synthesis approach delivered the first selective M(5) PAM (no activity at M(1)-M(4) @ 30microM), and an important tool compound to study the role of M(5) in the CNS.


Developmental Biology | 2009

Phospholipase D1 is required for angiogenesis of intersegmental blood vessels in zebrafish

Xin-Xin I. Zeng; Xiangjian Zheng; Yun Xiang; Hyekyung P. Cho; Jason R. Jessen; Tao P. Zhong; Lilianna Solnica-Krezel; H. Alex Brown

Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid and choline. Studies in cultured cells and Drosophila melanogaster have implicated PLD in the regulation of many cellular functions, including intracellular vesicle trafficking, cell proliferation and differentiation. However, the function of PLD in vertebrate development has not been explored. Here we report cloning and characterization of a zebrafish PLD1 (pld1) homolog. Like mammalian PLDs, zebrafish Pld1 contains two conservative HKD motifs. Maternally contributed pld1 transcripts are uniformly distributed in early embryo. Localized expression of pld1 is observed in the notochord during early segmentation, in the somites during later segmentation and in the liver at the larval stages. Studies in intact and cell-free preparations demonstrate evolutionary conservation of regulation. Inhibition of Pld1 expression using antisense morpholino oligonucleotides (MO) interfering with the translation or splicing of pld1 impaired intersegmental vessel (ISV) development. Incubating embryos with 1-butanol, which diverts production of phosphatidic acid to a phosphatidylalcohol, caused similar ISV defects. To determine where Pld1 is required for ISV development we performed transplantation experiments. Analyses of the mosaic Pld1 deficient embryos showed partial suppression of ISV defects in the segments containing transplanted wild-type notochord cells but not in the ones containing wild-type somitic cells. These results provide the first evidence that function of Pld1 in the developing notochord is essential for vascular development in vertebrates.


ACS Chemical Neuroscience | 2012

Targeting Selective Activation of M1 for the Treatment of Alzheimer’s Disease: Further Chemical Optimization and Pharmacological Characterization of the M1 Positive Allosteric Modulator ML169

James C. Tarr; Mark Turlington; Paul R Reid; Thomas J. Utley; Douglas J. Sheffler; Hyekyung P. Cho; Rebecca Klar; Tristano Pancani; Michael T. Klein; Thomas M. Bridges; Ryan D. Morrison; Anna L. Blobaum; Zixui Xiang; J. Scott Daniels; Colleen M. Niswender; P. Jeffrey Conn; Michael R. Wood; Craig W. Lindsley

The M(1) muscarinic acetylcholine receptor is thought to play an important role in memory and cognition, making it a potential target for the treatment of Alzheimers disease (AD) and schizophrenia. Moreover, M(1) interacts with BACE1 and regulates its proteosomal degradation, suggesting selective M(1) activation could afford both palliative cognitive benefit as well as disease modification in AD. A key challenge in targeting the muscarinic acetylcholine receptors is achieving mAChR subtype selectivity. Our lab has previously reported the M(1) selective positive allosteric modulator ML169. Herein we describe our efforts to further optimize this lead compound by preparing analogue libraries and probing novel scaffolds. We were able to identify several analogues that possessed submicromolar potency, with our best example displaying an EC(50) of 310 nM. The new compounds maintained complete selectivity for the M(1) receptor over the other subtypes (M(2)-M(5)), displayed improved DMPK profiles, and potentiated the carbachol (CCh)-induced excitation in striatal MSNs. Selected analogues were able to potentiate CCh-mediated nonamyloidogenic APPsα release, further strengthening the concept that M(1) PAMs may afford a disease-modifying role in the treatment of AD.


ACS Chemical Neuroscience | 2014

A Novel Class of Succinimide-Derived Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 1 Provides Insight into a Disconnect in Activity between the Rat and Human Receptors

Hyekyung P. Cho; Darren W. Engers; Daryl F. Venable; Colleen M. Niswender; Craig W. Lindsley; P. Jeffrey Conn; Kyle A. Emmitte; Alice L. Rodriguez

Recent progress in the discovery of mGlu₁ allosteric modulators has suggested the modulation of mGlu₁ could offer possible treatment for a number of central nervous system disorders; however, the available chemotypes are inadequate to fully investigate the therapeutic potential of mGlu₁ modulation. To address this issue, we used a fluorescence-based high-throughput screening assay to screen an allosteric modulator-biased library of compounds to generate structurally diverse mGlu₁ negative allosteric modulator hits for chemical optimization. Herein, we describe the discovery and characterization of a novel mGlu₁ chemotype. This series of succinimide negative allosteric modulators, exemplified by VU0410425, exhibited potent inhibitory activity at rat mGlu₁ but was, surprisingly, inactive at human mGlu₁. VU0410425 and a set of chemically diverse mGlu₁ negative allosteric modulators previously reported in the literature were utilized to examine this species disconnect between rat and human mGlu₁ activity. Mutation of the key transmembrane domain residue 757 and functional screening of VU0410425 and the literature compounds suggests that amino acid 757 plays a role in the activity of these compounds, but the contribution of the residue is scaffold specific, ranging from critical to minor. The operational model of allosterism was used to estimate the binding affinities of each compound to compare to functional data. This novel series of mGlu₁ negative allosteric modulators provides valuable insight into the pharmacology underlying the disconnect between rat and human mGlu₁ activity, an issue that must be understood to progress the therapeutic potential of allosteric modulators of mGlu₁.

Collaboration


Dive into the Hyekyung P. Cho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Scott Daniels

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge