Hyoban Lee
KAIST
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hyoban Lee.
Nano Letters | 2011
Jong Hyun Seo; Youngdong Yoo; Na Young Park; Sang Won Yoon; Hyoban Lee; Sol Han; Seok-Woo Lee; Tae Yeon Seong; Seung-Cheol Lee; Kon Bae Lee; Pil-Ryung Cha; Harold S. Park; Bongsoo Kim; Jae-Pyoung Ahn
We report that defect-free Au nanowires show superplasticity on tensile deformation. Evidences from high-resolution electron microscopes indicated that the plastic deformation proceeds layer-by-layer in an atomically coherent fashion to a long distance. Furthermore, the stress-strain curve provides full interpretation of the deformation. After initial superelastic deformation, the nanowire shows superplastic deformation induced by coherent twin propagation, completely reorientating the crystal from <110> to <100>. Uniquely well-disciplined and long-propagating atomic movements deduced here are ascribed to the superb crystallinity as well as the radial confinement of the Au nanowires.
Small | 2011
Seung Min Yoo; Taejoon Kang; Hyungchang Kang; Hyoban Lee; Mijeong Kang; Sang Yup Lee; Bongsoo Kim
Development of a rapid, sensitive, and multiplex pathogen DNA sensor enables early diagnosis and, subsequently, the proper treatment of infectious diseases, increasing the possibility to save the lives of infected patients. Here, the development of an ultrasensitive and multiplex pathogen DNA detection method that combines a patterned Au nanowire (NW)-on-film surface-enhanced resonance Raman scattering (SERRS) sensor with an exonuclease III-assisted target DNA recycling reaction is reported. Multiple probe DNAs are added to the target DNA solution, and among them, only the complementary probe DNA is selectively digested by exonuclease III, resulting in the decrease in its concentration. The digestion process is repeated by recycling of target DNAs. The decrease of the complementary probe DNA concentration is detected by SERRS. Combining the high sensitivity of the NW-on-film sensor and the target recycling reaction significantly improves DNA detection performance, resulting in the detection limit of 100 fM corresponding to 3 amole. By positioning Au NWs at specific addresses, multiple pathogen DNAs can be identified in a single step. Clinical sample tests with multiple genomic DNAs of pathogens show the potential of this sensor for practical diagnosis of infectious diseases.
ACS Nano | 2010
Youngdong Yoo; Ilsun Yoon; Hyoban Lee; Jihee Ahn; Jae-Pyoung Ahn; Bongsoo Kim
We report that twin-free single-crystalline Pd nanowire (NW) arrays grow epitaxially in a selected pattern on a substrate. Parallel aligned Pd NWs are synthesized on a SrTiO(3) (110) substrate in a very high density. On a SrTiO(3) (001) substrate, Pd NWs grow horizontally in two perpendicular directions. Vertical Pd NWs are synthesized instead of horizontal NWs when a c-cut sapphire substrate is employed. We reveal that the atomic structure of the substrate surface determines the geometry and orientation of seeds, which in turn direct the growth patterns of the NWs. The interface energy between the NW material and the substrate is also critical in determining the NW growth pattern. Polarization-dependent localized surface plasmon resonance of as-synthesized epitaxial Pd NW arrays is investigated for application as a plasmonic platform.
Nano Letters | 2012
Taejoon Kang; Wonjun Choi; Ilsun Yoon; Hyoban Lee; Min-Kyo Seo; Q-Han Park; Bongsoo Kim
Optical antennas interface an object with optical radiation and boost the absorption and emission of light by the objects through the antenna modes. It has been much desired to enhance both excitation and emission processes of the quantum emitters as well as to interface multiwavelength channels for many nano-optical applications. Here we report the experimental implementation of an optical antenna operating in the full visible range via surface plasmon currents induced in a defect-free single-crystalline Ag nanowire (NW). With its atomically flat surface, the long Ag NW reliably establishes multiple plasmonic resonances and produces a unique rainbow antenna radiation in the Fresnel region. Detailed antenna radiation properties, such as radiating near-field patterns and polarization states, were experimentally examined and precisely analyzed by numerical simulations and antenna theory. The multiresonant Ag NW nanoantenna will find superb applications in nano-optical spectroscopy, high-resolution nanoimaging, photovoltaics, and nonlinear signal conversion.
Small | 2014
Taejoon Kang; Hongki Kim; Jeong Min Lee; Hyoban Lee; Yun Seok Choi; Gyeongwon Kang; Min-Kyo Seo; Bong Hyun Chung; Yongwon Jung; Bongsoo Kim
MicroRNAs (miRNAs) are emerging new biomarkers for many human diseases. To fully employ miRNAs as biomarkers for clinical diagnosis, it is most desirable to accurately determine the expression patterns of miRNAs. The optimum miRNA profiling method would feature 1) highest sensitivity with a wide dynamic range for accurate expression patterns, 2) supreme specificity to discriminate single nucleotide polymorphisms (SNPs), and 3) simple sensing processes to minimize measurement variation. Here, an ultra-specific detection method of miRNAs with zeptomole sensitivity is reported by applying bi-temperature hybridizations on single-crystalline plasmonic nanowire interstice (PNI) sensors. This method shows near-perfect accuracy of SNPs and a very low detection limit of 100 am (50 zeptomole) without any amplification or labeling steps. Furthermore, multiplex sensing capability and wide dynamic ranges (100 am-100 pm) of this method allows reliable observation of the expression patterns of miRNAs extracted from human tissues. The PNI sensor offers combination of ultra-specificity and zeptomole sensitivity while requiring two steps of hybridization between short oligonucleotides, which could present the best set of features for optimum miRNA sensing method.
Chemistry-an Asian Journal | 2013
Hongki Kim; Taejoon Kang; Hyoban Lee; Hyunseong Ryoo; Seung Min Yoo; Sang Yup Lee; Bongsoo Kim
The direct transfer of single-crystalline Au nanowires (NWs) onto Au substrates was achieved by a simple attachment and detachment process. In the presence of a lubricant, Au NWs grown vertically on a sapphire substrate were efficiently moved to an Au substrate through van der Waals interactions. We demonstrate that the transferred Au NWs on the Au substrate can act as sensitive, reproducible, and long-term-stable surface-enhanced Raman scattering (SERS) sensors by detecting human α-thrombin as well as Pb(2+) and Hg(2+) ions. These three biochemically and/or environmentally important analytes were successfully detected with high sensitivity and selectivity by Au NW-SERS sensors bound by a thrombin-binding aptamer. Furthermore, the as-prepared sensors remained in working order after being stored under ambient conditions at room temperature for 80 days. Because Au NWs can be routinely transferred onto Au substrates and because the resultant Au NW-SERS sensors are highly stable and provide with high sensitivity and reproducibility of detection, these sensors hold potential for practical use in biochemical sensing.
Journal of Materials Chemistry C | 2015
Si-in Kim; Hana Yoon; Hyoban Lee; Sunghun Lee; Younghun Jo; Sungyul Lee; Jaebum Choo; Bongsoo Kim
Highly oriented single-crystalline ferromagnetic Co nanowire (NW) arrays were synthesized on sapphire substrates via a single-step chemical vapor deposition (CVD) method. On an m-cut sapphire substrate, Co NWs were vertically grown in epitaxial relationship with the substrate without using any catalysts or templates. On an r-cut sapphire substrate, Co NWs were horizontally grown in two perpendicular directions. Furthermore, we report that the Co NWs were transformed into Co3O4 nanotubes by thermal annealing under dilute O2 conditions. Such formation of hollow structures is ascribed to favored outward diffusion of Co ions. The present vertically aligned arrays of single-crystalline Co NWs could be utilized for advanced magnetic memory applications owing to their uniform orientations.
Small | 2012
Hyoban Lee; Youngdong Yoo; Taejoon Kang; Juneho In; Min-Kyo Seo; Bongsoo Kim
Topotaxial growth of Au(x) Ag(1-x) alloy nanowires (NWs) by postepitaxial deposition of Ag vapor on Au NWs and investigation of their plasmonic properties are reported. Ag vapor is supplied onto the epitaxially grown Au NWs, topotaxially turning them into Au(x) Ag(1-x) alloy NWs. The original geometries and alignments of the Au nanostructures are well preserved, while the composition of the alloy NWs is controlled by varying the Ag vapor supply time. The Au(0.5) Ag(0.5) NWs show high surface-enhanced Raman scattering (SERS) activity comparable to that of Ag NWs as well as highly increased oxidation resistance. The plasmon-active wavelength range of the Au(0.5) Ag(0.5) NW is significantly extended to the blue region compared to Au NWs. The Au(x) Ag(1-x) alloy NWs that have plasmonic activity in the blue region in addition to high corrosion resistance will make a superb material for practical plasmonic devices including SERS sensors and optical nanoantennas.
Nanotechnology | 2016
Wooseok Jeong; Miyeon Lee; Hyunsoo Lee; Hyoban Lee; Bongsoo Kim; Jeong Young Park
We demonstrate the charge transport properties of a self-assembled organic monolayer on Au nanoplates with conductive probe atomic force microscopy (CP-AFM). Atomically flat Au nanoplates, a few hundred micrometers on each side, that have only (111) surfaces, were synthesized using the chemical vapor transport method; these nanoplates were employed as the substrates for hexadecanethiol (HDT) self-assembled monolayers (SAMs). Atomic-scale high-resolution images show (√3 x √3) R30° molecular periodicity, indicating a well-ordered structure of the HDT on the Au nanoplates. We observed reduced friction and adhesion forces on the HDT SAMs on Au nanoplates, compared with Si substrates, which is consistent with the lubricating nature of HDT SAMs. The electrical properties, such as I-V characteristics and current as a function of load, were measured using CP-AFM. We obtained a tunneling decay constant (β) of 0.57 Å(-1), including through-bond (βtb = 0.99 Å(-1)) and through-space (βts = 1.36 Å(-1)) decay constants for the two-pathway model. This indicates that the charge transport properties of HDT SAMs on Au nanoplates are consistent with those on a Au (111) film, suggesting that SAMs on nanoplates can provide a new building block for molecular electronics.
RSC Advances | 2014
Hyangah Chon; Sangyeop Lee; Rui Wang; So-Young Bang; Hye-Soon Lee; Sang-Cheol Bae; Hyoban Lee; Bongsoo Kim; Jaebum Choo
We report a highly sensitive detection method for anti-CCP autoantibodies using a SERS-based magnetic immunosensor. The proposed immunoassay technique is expected to be a new clinical tool for the early diagnosis of rheumatoid arthritis (RA).