Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyung Won Ryu is active.

Publication


Featured researches published by Hyung Won Ryu.


Metabolomics | 2014

Metabolomics investigation of flavonoid synthesis in soybean leaves depending on the growth stage

Hyuk-Hwan Song; Hyung Won Ryu; Kyung Jun Lee; Il Yun Jeong; Dong Sub Kim; Sei-Ryang Oh

Soybean (Glycine max L.) leaves have unique nutraceutical and pharmacological benefits, and have been widely used as a source of healthy and functional food stuffs in Korea. In this study, we investigated the phytochemical metabolomic changes of soybean leaves depending on growth stages (maturation period) assessed based on UPLC–QTOF–MS analysis. Principal component analysis was carried out to trace the metabolite profiles of the phytochemicals from the vegetable stage (1D) through the seven reproductive stages (R1–R7). On the loading plot, significant changes in the contents of metabolites were found during the growth, and eight flavonoid kaempferol glycosides (2, 3, 6, 8, and 10), daidzein (14), genistein (17), and coumestrol (19) were evaluated as growth markers among the 19 isolated metabolites. The kaempferol glycosides were increasingly synthesized from the 1D to the R6 stage but decreased rapidly at stages R7–R8. The extensively synthesized daidzein and genistein were shown during seed growth in the pod (R5–R6), while coumestrol was increased significantly at stages R7–R8 (maturity period). The synthetic pathway of the flavonoids could be elucidated based on the concentration of the individual metabolites. These results demonstrate that the metabolite production changed depending on the growth stage; a possible pathway could be deduced using metabolomic analysis to provide information regarding physiological characterization and optimal harvesting time for crops.


Molecules and Cells | 2014

Indacaterol inhibits tumor cell invasiveness and MMP-9 expression by suppressing IKK/NF-κB activation.

Su Ui Lee; Kyung-Seop Ahn; Min Hee Sung; Ji-Won Park; Hyung Won Ryu; Hyun-Jun Lee; Sung-Tae Hong; Sei-Ryang Oh

The β2 adrenergic receptor (ADRB2) is a G protein-coupled transmembrane receptor expressed in the human respiratory tract and widely recognized as a pharmacological target for treatments of asthma and chronic obstructive pulmonary disorder (COPD). Although a number of ADRB2 agonists have been developed for use in asthma therapy, indacaterol is the only ultra-long-acting inhaled β2-agonist (LABA) approved by the FDA for relieving the symptoms in COPD patients. The precise molecular mechanism underlying the pharmacological effect of indacaterol, however, remains unclear. Here, we show that β-arrestin-2 mediates the internalization of ADRB2 following indacaterol treatment. Moreover, we demonstrate that indacaterol significantly inhibits tumor necrosis factor-α (TNF-α)-induced NF-κB activity by reducing levels of both phosphorylated-IKK and -IκBα, thereby decreasing NF-κB nuclear translocation and the expression of MMP-9, an NF-κB target gene. Subsequently, we show that indacaterol significantly inhibits TNF-α/NF-κB-induced cell invasiveness and migration in a human cancer cell line. In conclusion, we propose that indacaterol may inhibit NF-κB activity in a β-arrestin2-dependent manner, preventing further lung damage and improving lung function in COPD patients.


Carcinogenesis | 2014

Targeting of magnolin on ERKs inhibits Ras/ERKs/RSK2-signaling-mediated neoplastic cell transformation.

Cheol Jung Lee; Hye Suk Lee; Hyung Won Ryu; Mee Hyun Lee; Ji Young Lee; Yan Li; Zigang Dong; Hyeong Kyu Lee; Sei Ryang Oh; Yong Yeon Cho

Mitogen-activated protein kinases play a key role in cell proliferation, cell cycle progression and cell transformation, and activated Ras/extracellular signal-regulated kinases (ERKs)/ribosomal S6 kinase 2 (RSK2) signaling pathways have been widely identified in many solid tumors. In this study, we found that magnolin, a compound found in the Magnolia species, directly targeted and inhibited ERK1 and ERK2 kinase activities with IC50 values of 87 and 16.5 nM by competing with adenosine triphosphate in an active pocket. Further, we demonstrated that magnolin inhibited epidermal growth factor (EGF)-induced p90RSKs phosphorylation at Thr359/Ser363, but not ERKs phosphorylation at Thr202/Tyr204, and this resulted in inhibition of cell proliferation by suppression of the G1/S cell cycle transition. Additionally, p38 kinases, Jun N-terminal kinases and Akts were not involved in the magnolin-mediated inhibitory signaling. Magnolin targeting of ERK1 and 2 activities suppressed the phosphorylation of RSK2 and downstream target proteins including ATF1 and c-Jun and AP-1, a dimer of Jun/Fos, and the transactivation activities of ATF1 and AP-1. Notably, ERKs inhibition by magnolin suppressed EGF-induced anchorage-independent cell transformation and colony growth of Ras(G12V)-harboring A549 human lung cancer cells and NIH3T3 cells stably expressing Ras(G12V) in soft agar. Taken together, these results demonstrated that magnolin might be a naturally occurring chemoprevention and therapeutic agent capable of inhibiting cell proliferation and transformation by targeting ERK1 and ERK2.


Journal of Ethnopharmacology | 2015

Piscroside C, a novel iridoid glycoside isolated from Pseudolysimachion rotundum var. subinegrum suppresses airway inflammation induced by cigarette smoke.

Hyuk Hwan Song; In Sik Shin; So Yeun Woo; Su Ui Lee; Min Hee Sung; Hyung Won Ryu; Doo-Young Kim; Kyung Seop Ahn; Hyeong Kyu Lee; Dongho Lee; Sei Ryang Oh

ETHNOPHARMACOLOGICAL RELEVANCE Pseudolysimachion rotundum var. subintegrum (Speedwell, Plantaginaceae) is used as a traditional herbal medicine for treating bronchitis, cough and asthma in Korea, China, Russia, and Europe. AIM OF THE STUDY In this study, we investigated the protective effects of the novel iridoid glycoside, piscroside C (compound 1) isolated from the methanolic extract of P. rotundum var. subintegrum against inflammatory responses using a cigarette smoke induced chronic obstructive pulmonary disease (COPD) and TNF-α-stimulated human airway epithelial NCI-H292 cells. MATERIALS AND METHODS The novel iridoid glycoside piscroside C was isolated from the methanolic extract of P. rotundum var. subintegrum. The chemical structure was established by NMR, HRESIMS, and optical rotation. In in vivo experiment, the mice received 1h of cigarette smoke for 3 days. Piscroside C was administered to mice by oral gavage 1h before cigarette smoke exposure for 3 days. In in vitro experiment, we evaluated the effect of piscroside C on proinflammatory mediators in H292 cells stimulated with TNF-α. RESULTS Piscroside C significantly reduced the neutrophil influx, reactive oxygen species production, IL-6, TNF-α, and elastase activity in bronchoalveolar lavage fluid in COPD animals. In addition, piscroside C attenuated NF-κB and IκB phosphorylation, leading to reduced recruitment of inflammatory cells into the lung tissue. Consistent with the results of in vivo experiment, piscroside C significantly inhibited the expression of inflammatory cytokines (IL-6, IL-8 and IL-1β) by inhibiting NF-κB activation, as resulting decrease in the phosphorylation of IKKβ, IκBα and TAK1 in TNF-α-stimulated H292 cells. CONCLUSION These findings indicate that piscroside C effectively inhibits inflammatory responses, which is an important process in the development of COPD through suppression of IKK/NF-κB activation. Our study suggest that piscroside C might represent a useful therapeutic for the treatment of inflammatory airway disease.


Journal of Ginseng Research | 2014

Discrimination of white ginseng origins using multivariate statistical analysis of data sets

Hyuk-Hwan Song; Ji Young Moon; Hyung Won Ryu; Bong-Soo Noh; Jeong-Han Kim; Hyeong-Kyu Lee; Sei-Ryang Oh

Background White ginseng (Panax ginseng Meyer) is commonly distributed as a health food in food markets. However, there is no practical method for distinguishing Korean white ginseng (KWG) from Chinese white ginseng (CWG), except for relying on the traceability system in the market. Methods Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with orthogonal partial least squares discrimination analysis (OPLS-DA) was employed to discriminate between KWG and CWG. Results The origins of white ginsengs in two test sets (1.0 μL and 0.2 μL injections) could be successfully discriminated by the OPLS-DA analysis. From OPLS-DA S-plots, KWG exhibited tentative markers derived from ginsenoside Rf and notoginsenoside R3 isomer, whereas CWG exhibited tentative markers derived from ginsenoside Ro and chikusetsusaponin Iva. Conclusion Results suggest that ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled with OPLS-DA is an efficient tool for identifying the difference between the geographical origins of white ginsengs.


Cytokine | 2016

Verproside inhibits TNF-α-induced MUC5AC expression through suppression of the TNF-α/NF-κB pathway in human airway epithelial cells

Su Ui Lee; Min Hee Sung; Hyung Won Ryu; Jinhyuk Lee; Hui-Seong Kim; Hyun Ju In; Kyung-Seop Ahn; Hyun-Jun Lee; Hyeong-Kyu Lee; Dae-Hee Shin; Yongnam Lee; Sung-Tae Hong; Sei-Ryang Oh

Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of MUC5AC, are significant risk factors in asthma and chronic obstructive pulmonary disease (COPD) patients. Previously, we reported that verproside, a catalpol derivative iridoid glycoside isolated from Pseudolysimachion rotundum var. subintegrum, is a potent anti-asthmatic candidate drug in vivo. However, the molecular mechanisms underlying the pharmacological actions of verproside remain unknown. Here, we found that verproside significantly reduces the expression levels of tumor necrosis factor alpha (TNF-α)-induced MUC5AC mRNA and protein by inhibiting both nuclear factor kappa B (NF-κB) transcriptional activity and the phosphorylation of its upstream effectors such as IκB kinase (IKK)β, IκBα, and TGF-β-activated kinase 1 (TAK1) in NCI-H292 cells. Moreover, verproside attenuated TNF-α-induced MUC5AC transcription more effectively when combined with an IKK (BAY11-7082) or a TAK1 (5z-7-oxozeaenol) inhibitor than when administered alone. Importantly, we demonstrated that verproside negatively modulates the formation of the TNF-α-receptor (TNFR) 1 signaling complex [TNF-RSC; TNFR1-recruited TNFR1-associated death domain protein (TRADD), TNFR-associated factor 2 (TRAF2), receptor-interacting protein kinase 1 (RIP1), and TAK1], the most upstream signaling factor of NF-κB signaling. In silico molecular docking studies show that verproside binds between TRADD and TRAF2 subunits. Altogether, these results suggest that verproside could be a good therapeutic candidate for treatment of inflammatory airway diseases such as asthma and COPD by blocking the TNF-α/NF-κB signaling pathway.


Bioorganic & Medicinal Chemistry Letters | 2016

Potent selective monoamine oxidase B inhibition by maackiain, a pterocarpan from the roots of Sophora flavescens

Hyun Woo Lee; Hyung Won Ryu; Myung-Gyun Kang; Daeui Park; Sei-Ryang Oh; Hoon Kim

Monoamine oxidase (MAO) catalyzes the oxidation of monoamines and its two isoforms, MAO-A and MAO-B, break down neurotransmitter amines. Of the compounds isolated from the roots of Sophora flavescens, (-)-maackiain (4), a pterocarpan, was found to potently and selectively inhibit human MAO-B, with an IC50 of 0.68μM, and to have a selectivity index of 126.2 for MAO-B. As compared with other herbal natural products, the IC50 value of 4 for MAO-B is one of the lowest reported to date. Genistein (1) highly, effectively and non-selectively inhibited MAO-A and MAO-B with IC50 values of 3.9μM and 4.1μM, respectively. (-)-4-Hydroxy-3-methoxy-8,9-methylenedioxypterocarpan (2) effectively and non-selectively inhibited MAO-A and MAO-B with IC50 values of 20.3μM and 10.3μM, respectively. In addition, compound 4 reversibly and competitively inhibited MAO-B with a Ki value of 0.054μM. Molecular docking simulation revealed that the binding affinity of 4 for MAO-B (-26.6kcal/mol) was greater than its affinity for MAO-A (-8.3kcal/mol), which was in-line with our inhibitory activity findings. Furthermore, Cys172 of MAO-B was found to be a key residue for hydrogen bonding with compound 4. The findings of this study suggest compound 4 be viewed as a new potent, selective, and reversible MAO-B inhibitor, and that compounds 1 and 2 be considered useful lead compounds for the developments of nonselective and reversible MAO inhibitors for the treatment of disorders like Parkinsons disease, Alzheimer disease, and depression.


Phytotherapy Research | 2015

Mangosenone F, A Furanoxanthone from Garciana mangostana, Induces Reactive Oxygen Species-Mediated Apoptosis in Lung Cancer Cells and Decreases Xenograft Tumor Growth

Kyung Hye Seo; Hyung Won Ryu; Mi Jin Park; Ki Hun Park; Jin Hyo Kim; Mi-Ja Lee; Hyeon Jung Kang; Sun Lim Kim; Jin Hwan Lee; Woo Duck Seo

Mangosenone F (MSF), a natural xanthone, was isolated form Carcinia mangotana, and a few studies have reported its glycosidase inhibitor effect. In this study we investigated the anti lung cancer effect of MSF both in vitro and in vivo. MSF inhibited cancer cell cytotoxicity and induced and induced apoptosis via reactive oxygen species (ROS) generation in NCI‐H460. MSF treatment also showed in pronounced release of apoptogenic cytochrome c from the mitochondria to the cytosol, downregulation of Bcl‐2 and Bcl‐xL, and upregulation of Bax, suggesting that caspase‐mediated pathways were involved in MSF‐induced apoptosis. ROS activation of the mitogen‐activated protein kinase signaling pathway was shown to play a predominant role in the apoptosis mechanism of MSF. Compared with cisplatin treatment, MSF treatment showed significantly increased inhibition of the growth of NCI‐H460 cells xenografted in nude mice. Together, these results indicate the potential of MSF as a candidate natural anticancer drug by promoting ROS production. Copyright


Biochimie | 2015

6-O-Veratroyl catalpol suppresses pro-inflammatory cytokines via regulation of extracellular signal-regulated kinase and nuclear factor-κB in human monocytic cells.

Minh Quan Le; Man Sub Kim; Yong-Seok Song; Hyung Won Ryu; Sei-Ryang Oh; Do-Young Yoon

The compound 6-O-veratroyl catalpol (6-O) is a bioactive iridoid glucoside that was originally isolated from Pseudolysimachion rotundum var. subintegrum. It has been demonstrated that catapol derivative iridoid glucosides including 6-O, possess anti-inflammatory activity in carragenan-induced paw edema mouse model as well as bronchoalveolar lavage fluid of ovalbumin-induced mouse model. In the present study, we investigated whether 6-O modulates inflammatory responses in THP-1 monocytic cells stimulated with phorbol12-myristate-13-acetate (PMA). Our data showed that 6-O inhibited PMA induced interleukin (IL)-1β and tumor necrosis factor (TNF)-α expression in THP-1 monocytic cells. Mechanistic studies revealed that 6-O suppressed the activity of protein kinase C (PKC), which further resulted in downstream inactivation of extracellular signal-regulated kinase (ERK) and nuclear factor-κB (NF-κB) inflammatory pathway. The results implied that 6-O may protect against inflammatory responses that could be a potential compound in treating inflammatory diseases.


International Journal of Biological Macromolecules | 2017

Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-O-malonylglucoside) derivative from Agastache rugosa

Hyun Woo Lee; Hyung Won Ryu; Seung Cheol Baek; Myung-Gyun Kang; Daeui Park; Hyoung-Yun Han; Ju Hyeon An; Sei-Ryang Oh; Hoon Kim

Five compounds were isolated from the leaves of Agastache rugosa and tested for monoamine oxidase (MAO) inhibitory activity. Acacetin, a flavonoid, potently inhibited recombinant human MAO-A and MAO-B (IC50=0.19 and 0.17μM, respectively), and reversibly and competitively inhibited MAO-A and MAO-B (Ki=0.045 and 0.037μM, respectively). Acacetin 7-O-(6-O-malonylglucoside) (AMG) was also found to effectively inhibit MAO-A and MAO-B (IC50=2.34 and 1.87μM, respectively), and to reversibly and competitively inhibit MAO-A and MAO-B (Ki=1.06 and 0.38μM, respectively). Tilianin (a glucoside derivative of acacetin) had little inhibitory activity, but the introduction of a malonyl group at sugar moiety significantly increased inhibitory activity. Molecular docking simulation revealed the binding energy of acacetin for MAO-B (-44.2kcal/mol) was greater than its energy for MAO-A (-27.0kcal/mol), and that the Cys172 residue of MAO-B was important for hydrogen bonding with acacetin. AMG was predicted to bind to MAO-B with an energy of -23.1kcal/mol by possible hydrogen-bond formation between an oxygen atom of Ile477 residue and a hydrogen atom (H17) of AMG. However, the interaction between AMG and MAO-A was not verified by the docking simulation. This study suggests acacetin and AMG be viewed as new reversible MAO inhibitors, and useful lead compounds for the inhibitor development.

Collaboration


Dive into the Hyung Won Ryu's collaboration.

Top Co-Authors

Avatar

Sei-Ryang Oh

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Heung Joo Yuk

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Kyung-Seop Ahn

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Su Ui Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Doo-Young Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Jae-Won Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Hyun Ah Park

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Jung Hee Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Ok-Kyoung Kwon

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Hoon Kim

Sunchon National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge