Hyunjong Kim
Seoul National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hyunjong Kim.
Bone | 2002
S.E. Lee; Kyung Mi Woo; S.Y. Kim; Hyunjong Kim; K. Kwack; Zang Hee Lee; Hong-Hee Kim
Phosphatidylinositol 3-kinase (PI 3-kinase) and mitogen-activated protein kinases (MAPKs) have been implicated in diverse cellular functions, including proliferation, migration, and survival. In this study, we examined the involvement of these kinases in osteoclast differentiation by employing specific inhibitors of the kinases. The osteoclast differentiation was assessed in three different culture systems: a coculture of mouse bone marrow cells with mouse calvarial osteoblasts, a mouse bone marrow cell culture in the presence of receptor activator of NF-kappaB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF), and a culture of bone-resident osteoclast precursor cells driven by RANKL and M-CSF. LY294002, a specific inhibitor of PI 3-kinase, potently inhibited osteoclast differentiation in all culture systems when assessed by both tartrate-resistant acid phosphatase (TRAP) staining and dentine resorption assays. Inhibition of p38 MAPK by SB202190 resulted in a strong suppression in the exogenous RANKL dependent mouse bone marrow and bone resident precursor cell cultures. Another MAPK pathway inhibitor (PD98059), which blocks the activation of extracellular signal-regulated kinase (ERK) by inhibiting the upstream kinase MAPK-ERK kinase (MEK) 1, exerted an inhibitory effect on osteoclast differentiation only at the highest concentration tested (30 micromol/L) in many cases. Whether the signaling pathways involving these kinases are activated by RANKL was also examined. The RANKL-stimulated phosphorylation of Akt, a downstream target of PI 3-kinase, and that of ERK were observed. RANKL also stimulated the activity of p38. These results suggest that PI 3 kinase, p38, and ERK play roles in osteoclast differentiation, at least in part, by participating in RANKL signaling.
Review of Scientific Instruments | 2008
Hyunjong Kim; J. K. Han; Roy Kaiser; Kyu Hwan Oh; Joost J. Vlassak
We report on a technique for making high-throughput residual stress measurements on thin films by means of micromachined cantilever beams and an array of parallel laser beams. In this technique, the film of interest is deposited onto a silicon substrate with micromachined cantilever beams. The residual stress in the film causes the beams to bend. The curvature of the beams, which is proportional to the residual stress in the film, is measured by scanning an array of parallel laser beams generated with a diffraction grating along the length of the beams. The reflections of the laser beams are captured using a digital camera. A heating stage enables measurement of the residual stress as a function of temperature. As the curvature of each beam is determined by the local stress in the film, the film stress can be mapped across the substrate. This feature makes the technique a useful tool for the combinatorial analysis of phase transformations in thin films, especially when combined with the use of films with lateral composition gradients. As an illustration, we apply the technique to evaluate the thermomechanical behavior of Fe-Pd binary alloys as a function of composition.
Scientific Reports | 2017
Junghwan Byun; Byeongmoon Lee; Eunho Oh; Hyunjong Kim; Sang-Woo Kim; Seung Hwan Lee; Yongtaek Hong
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.
Scientific Reports | 2016
Sang-Woo Kim; Seongdae Choi; Eunho Oh; Junghwan Byun; Hyunjong Kim; Byeongmoon Lee; Seung Hwan Lee; Yongtaek Hong
A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties.
Journal of Semiconductor Technology and Science | 2017
Susie Kim; Seung In Na; Youngtae Yang; Hyunjong Kim; Tae Hoon Kim; Jun Soo Cho; Jinhyung Kim; Jin Woo Chang; Suhwan Kim
In this paper, a 4×32-channel neural recording system capable of acquiring neural signals is introduced. Four 32-channel neural recording ICs, complex programmable logic devices (CPLDs), a micro controller unit (MCU) with USB interface, and a PC are used. Each neural recording IC, implemented in 0.18 mm CMOS technology, includes 32 channels of analog front-ends (AFEs), a 32-to-1 analog multiplexer, and an analog-to-digital converter (ADC). The midband gain of the AFE is adjustable in four steps, and have a tunable bandwidth. The AFE has a mid-band gain of 54.5 dB to 65.7 dB and a bandwidth of 35.3 Hz to 5.8 kHz. The high-pass cutoff frequency of the AFE varies from 18.6 Hz to 154.7 Hz. The input-referred noise (IRN) of the AFE is 10.2 mV rms . A high-resolution, low-power ADC with a high conversion speed achieves a signal-to-noise and distortion ratio (SNDR) of 50.63 dB and a spurious-free dynamic range (SFDR) of 63.88 dB, at a sampling-rate of 2.5 MS/s. The effectiveness of our neural recording system is validated in in-vivo recording of the primary somatosensory cortex of a rat.
system on chip conference | 2015
Yujin Park; Han Yang; Hyunjong Kim; Jun Soo Cho; Suhwan Kim
This paper presents a low noise output stage of oversampling audio digital-to-analog converter (DAC). The proposed glitchless switched capacitor DAC (GSC-DAC) eliminates the penalty of a constrained signal range and a signal distortion caused by return-to-zero signals in SC-DAC that is an essential part in order to convert the digital signal into the analog signal. By using a track and hold circuit and deglitching method in GSC-DAC, the low noise is efficiently achieved. The results of post layout simulation show the noise performance improvements of 21dB on average of SNR, SNDR, SFDR and THD in comparison with the absence of the proposed techniques.
Journal of The Optical Society of Korea | 2012
Hyunjong Kim; Suhwan Kim; Yongtaek Hong
We report, for the first time, operation frequency dependence of current density-voltage (JOLED-VOLED) shift for multi-layer organic light-emitting diodes (OLEDs). When the OLEDs were electrically stressed for 21 hours with 50% duty voltage pulses at 60, 120, 240, and 360 Hz, the JOLED-VOLED shifts were suppressed by half for 360 Hz operation compared with 60 Hz operation, but with little change in emission efficiencies. This frequency dependent JOLED-VOLED shift is believed to be commonly observed for typical multi-layer OLEDs and can be used to further improve lifetime of digitally-driven active-matrix OLED displays.
Nanoscale | 2015
Yunsik Joo; Junghwan Byun; Narkhyeon Seong; Jewook Ha; Hyunjong Kim; Sang-Woo Kim; Tae Hoon Kim; Hwarim Im; Donghyun Kim; Yongtaek Hong
Scripta Materialia | 2007
Hyunjong Kim; Myoung-Woon Moon; Dong-Ik Kim; Kwang-Ryeol Lee; Kyu Hwan Oh
Journal of Periodontal Research | 2006
Young-Hoon Chung; Eun-Ju Chang; Su-Yong Kim; Hyung-Il Kim; Hyunjong Kim; Somin Lee; Jihoon Ko