I. Olaciregui-Ruiz
Netherlands Cancer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I. Olaciregui-Ruiz.
Physics in Medicine and Biology | 2013
I. Olaciregui-Ruiz; R. Rozendaal; B.J. Mijnheer; M. van Herk; A. Mans
At our institution EPID (electronic portal imaging device) dosimetry is routinely applied to perform in vivo dose verification of all patient treatments with curative intent since January 2008. The major impediment of the method has been the amount of work required to produce and inspect the in vivo dosimetry reports (a time-consuming and labor-intensive process). In this paper we present an overview of the actions performed to implement an automated in vivo dosimetry solution clinically. We reimplemented the EPID dosimetry software and modified the acquisition software. Furthermore, we introduced new tools to periodically inspect the record-and-verify database and automatically run the EPID dosimetry software when needed. In 2012, 95% of our 3839 treatments scheduled for in vivo dosimetry were analyzed automatically (27,633 portal images of intensity-modulated radiotherapy (IMRT) fields, 5551 portal image data of VMAT arcs, and 2003 portal images of non-IMRT fields). The in vivo dosimetry verification results are available a few minutes after delivery and alerts are immediately raised when deviations outside tolerance levels are detected. After the clinical introduction of this automated solution, inspection of the detected deviations is the only remaining work. These newly developed tools are a major step forward towards full integration of in vivo EPID dosimetry in radiation oncology practice.
Medical Physics | 2011
Markus Wendling; Leah N. McDermott; A. Mans; I. Olaciregui-Ruiz; Raul Pecharromán-Gallego; Jan-Jakob Sonke; J. Stroom; Marcel van Herk; Ben J. Mijnheer
PURPOSE At the Netherlands Cancer Institute--Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. METHODS The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D γ evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D γ evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. RESULTS The improvements by applying the in aqua vivo approach are considerable. The percentage of γ values ≤1 increased on average from 66.2% to 93.1% and from 43.6% to 97.5% for the IMRT and VMAT cases, respectively. The corresponding mean γ value decreased from 0.99 to 0.43 for the IMRT cases and from 1.71 to 0.40 for the VMAT cases, which is similar to the accepted clinical values for the verification of IMRT treatments of prostate, rectum, and head-and-neck cancers. The deviation between the reconstructed and planned dose at the isocenter diminished on average from 5.3% to 0.5% for the VMAT patients and was almost the same, within 1%, for the IMRT cases. The in aqua vivo verification results for IMRT and VMAT treatments of a large group of patients had a mean γ of approximately 0.5, a percentage of γ values ≤1 larger than 89%, and a difference of the isocenter dose value less than 1%. CONCLUSIONS With the in aqua vivo approach for the verification of lung cancer treatments (IMRT and VMAT), we can achieve results with the same accuracy as obtained during in vivo EPID dosimetry of sites without large inhomogeneities.
Practical radiation oncology | 2015
Ben J. Mijnheer; P. Gonzalez; I. Olaciregui-Ruiz; R. Rozendaal; Marcel van Herk; A. Mans
PURPOSE To assess the usefulness of electronic portal imaging device (EPID)-based 3-dimensional (3D) transit dosimetry in a radiation therapy department by analyzing a large set of dose verification results. METHODS AND MATERIALS In our institution, routine in vivo dose verification of all treatments is performed by means of 3D transit dosimetry using amorphous silicon EPIDs. The total 3D dose distribution is reconstructed using a back-projection algorithm and compared with the planned dose distribution using 3D gamma evaluation. Dose reconstruction and gamma evaluation software runs automatically in our clinic, and analysis results are (almost) immediately available. If a deviation exceeds our alert criteria, manual inspection is required. If necessary, additional phantom measurements are performed to separate patient-related errors from planning or delivery errors. Three-dimensional transit dosimetry results were analyzed per treatment site between 2012 and 2014 and the origin of the deviations was assessed. RESULTS In total, 4689 of 15,076 plans (31%) exceeded the alert criteria between 2012 and 2014. These alerts were patient-related and attributable to limitations of our back-projection and dose calculation algorithm or to external sources. Clinically relevant deviations were detected for approximately 1 of 430 patient treatments. Most of these errors were because of anatomical changes or deviations from the routine clinical procedure and would not have been detected by pretreatment verification. Although cone beam computed tomography scans yielded information about anatomical changes, their effect on the dose delivery was assessed quantitatively by means of 3D in vivo dosimetry. CONCLUSIONS EPID-based transit dosimetry is a fast and efficient dose verification technique. It provides more useful information and is less time-consuming than pretreatment verification measurements of intensity modulated radiation therapy and volumetric modulated arc therapy. Large-scale implementation of 3D transit dosimetry is therefore a powerful method to guarantee safe dose delivery during radiation therapy.
Medical Physics | 2016
H. Spreeuw; R. Rozendaal; I. Olaciregui-Ruiz; P. Gonzalez; A. Mans; Ben J. Mijnheer; Marcel van Herk
PURPOSE Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of this study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. METHODS The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. RESULTS The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took 266 ± 11 ms on a dual octocore Intel Xeon E5-2630 CPU running at 2.40 GHz. The introduced delivery errors were detected after 5-10 s irradiation time. CONCLUSIONS A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for two different kinds of gross delivery errors. Thus, online 3D dose verification has been technologically achieved.
Journal of Physics: Conference Series | 2013
B.J. Mijnheer; I. Olaciregui-Ruiz; R. Rozendaal; J.J. Sonke; H. Spreeuw; R. Tielenburg; M. van Herk; R.E. Vijlbrief; A. Mans
In this paper the various approaches of EPID-based in vivo IMRT and VMAT dose verification, and their clinical implementation, are described. It will be shown that EPID-based in vivo dosimetry plays an important role in the total chain of verification procedures in a radiotherapy department. EPID-based dosimetry, in combination with in-room imaging, is a fast and accurate tool for 3D in vivo verification of VMAT delivery. EPID-based in vivo dosimetry provides clinically more useful information and is less time consuming than patient-specific pre-treatment dose verification. In addition to accurate 3D dose verification, in vivo EPID-based dosimetry will also detect major errors in the dose received by individual patients, and provides a safety net for advanced treatments such as IMRT and VMAT.
Journal of Physics: Conference Series | 2015
B.J. Mijnheer; I. Olaciregui-Ruiz; R. Rozendaal; H. Spreeuw; M van Herk; A. Mans
3D in vivo dose verification using a-Si EPIDs is performed routinely in our institution for almost all RT treatments. The EPID-based 3D dose distribution is reconstructed using a back-projection algorithm and compared with the planned dose distribution using 3D gamma evaluation. Dose-reconstruction and gamma-evaluation software runs automatically, and deviations outside the alert criteria are immediately available and investigated, in combination with inspection of cone-beam CT scans. The implementation of our 3D EPID- based in vivo dosimetry approach was able to replace pre-treatment verification for more than 90% of the patient treatments. Clinically relevant deviations could be detected for approximately 1 out of 300 patient treatments (IMRT and VMAT). Most of these errors were patient related anatomical changes or deviations from the routine clinical procedure, and would not have been detected by pre-treatment verification. Moreover, 3D EPID-based in vivo dose verification is a fast and accurate tool to assure the safe delivery of RT treatments. It provides clinically more useful information and is less time consuming than pre-treatment verification measurements. Automated 3D in vivo dosimetry is therefore a prerequisite for large-scale implementation of patient-specific quality assurance of RT treatments.
Journal of Physics: Conference Series | 2010
Ben J. Mijnheer; A. Mans; I. Olaciregui-Ruiz; Jan-Jakob Sonke; Rene Tielenburg; Marcel van Herk; R.E. Vijlbrief; J. Stroom
A review is given of the clinical use of EPID dosimetry in the Department of Radiation Oncology of The Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital. All curative plans (almost all IMRT or VMAT) are verified with EPID dosimetry, mostly in vivo. The 2D approach for IMRT verification and the 3D method for VMAT verification are elucidated and their clinical implementation described. It has been shown that EPID dosimetry plays an important role in the total chain of verification procedures that are implemented in our department. It provides a safety net for advanced treatments such as IMRT and VMAT, as well as a full account of the dose delivered.
Radiotherapy and Oncology | 2017
Erik van der Bijl; René F.M. van Oers; I. Olaciregui-Ruiz; A. Mans
BACKGROUND AND PURPOSE To compare DVH-based quality assurance to a multi-parametric γ-based methodology for in vivo EPID dosimetry for VMAT to the pelvis. MATERIALS AND METHODS For 47 rectum, 37 prostate, and 44 bladder VMAT treatments we reconstructed the 3D dose distributions of 387 fractions from in vivo EPID dosimetry. The difference between planned and measured dose was evaluated using γ analysis (3%/3mm) in the 50% isodose volume (IDV) and DVH differences (ΔD2, ΔD50 and ΔD98) of targets and organs at risk. The γ-indicators mean γ, γ pass rate and γ1% were compared to DVH-differences and their correlations were studied. DVH-based alerts on PTV and IDV were compared to γ-based alerts. RESULTS Average PTV D50 and D98 dose differences were 0.0±2.2% (1SD) and -1.4±2.9% (1SD). Alert criteria of |ΔD50|<3.5-4.5% corresponded to an alert rate of about 10%. Strong correlations between mean γ and γ pass rate and difference in PTV ΔD50 were observed for all sites. DVH- and γ-based alerts agreed on >80% of the fractions for the majority of compared alert thresholds and methods. This agreement is >90% for the larger deviations. CONCLUSIONS Strong correlations between some γ- and DVH indicators were found. Our comparison of multi-parametric alert strategies showed clinical equivalence for γ- and DVH-based methods.
Physics in Medicine and Biology | 2017
I Torres-Xirau; I. Olaciregui-Ruiz; R. Rozendaal; P. Gonzalez; B.J. Mijnheer; J-J Sonke; U. Van der Heide; A. Mans
In external beam radiotherapy, electronic portal imaging devices (EPIDs) are frequently used for pre-treatment and for in vivo dose verification. Currently, various MR-guided radiotherapy systems are being developed and clinically implemented. Independent dosimetric verification is highly desirable. For this purpose we adapted our EPID-based dose verification system for use with the MR-Linac combination developed by Elekta in cooperation with UMC Utrecht and Philips. In this study we extended our back-projection method to cope with the presence of an extra attenuating medium between the patient and the EPID. Experiments were performed at a conventional linac, using an aluminum mock-up of the MRI scanner housing between the phantom and the EPID. For a 10 cm square field, the attenuation by the mock-up was 72%, while 16% of the remaining EPID signal resulted from scattered radiation. 58 IMRT fields were delivered to a 20 cm slab phantom with and without the mock-up. EPID reconstructed dose distributions were compared to planned dose distributions using the [Formula: see text]-evaluation method (global, 3%, 3 mm). In our adapted back-projection algorithm the averaged [Formula: see text] was [Formula: see text], while in the conventional it was [Formula: see text]. Dose profiles of several square fields reconstructed with our adapted algorithm showed excellent agreement when compared to TPS.
Journal of Applied Clinical Medical Physics | 2015
H. Spreeuw; R. Rozendaal; Priscilla Camargo; A. Mans; Markus Wendling; I. Olaciregui-Ruiz; Jan-Jakob Sonke; Marcel van Herk; Ben J. Mijnheer
Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high‐energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel‐to‐dose conversion for the situation without wedge is used. A possible solution would be to consider a wedged beam as another photon beam quality requiring separate beam modeling of the dose calculation algorithm. The aim of this study was to investigate a more practical solution: to make aSi EPID‐based dosimetry models also applicable for wedged beams without an extra commissioning effort of the parameters of the model. For this purpose two energy‐dependent wedge multiplication factors have been introduced to be applied for portal images taken with and without a patient/phantom in the beam. These wedge multiplication factors were derived from EPID and ionization chamber measurements at the EPID level for wedged and nonwedged beams, both with and without a polystyrene slab phantom in the beam. This method was verified for an EPID dosimetry model used for wedged beams at three photon beam energies (6, 10, and 18 MV) by comparing dose values reconstructed in a phantom with data provided by a treatment planning system (TPS), as a function of field size, depth, and off‐axis distance. Generally good agreement, within 2%, was observed for depths between dose maximum and 15 cm. Applying the new model to EPID dose measurements performed during ten breast cancer patient treatments with wedged 6 MV photon beams showed that the average isocenter underdosage of 5.3% was reduced to 0.4%. Gamma‐evaluation (global 3%/3 mm) of these in vivo data showed an increase in percentage of points with γ≤1 from 60.2% to 87.4%, while γmean reduced from 1.01 to 0.55. It can be concluded that, for wedged beams, the multiplication of EPID pixel values with an energy‐dependent correction factor provides good agreement between dose values determined by an EPID and a TPS, indicating the usefulness of such a practical solution. PACS numbers: 87.55.km, 87.55.kd, 87.55.Qr, 87.56a.ng