R. Rozendaal
Netherlands Cancer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Rozendaal.
Physics in Medicine and Biology | 2013
I. Olaciregui-Ruiz; R. Rozendaal; B.J. Mijnheer; M. van Herk; A. Mans
At our institution EPID (electronic portal imaging device) dosimetry is routinely applied to perform in vivo dose verification of all patient treatments with curative intent since January 2008. The major impediment of the method has been the amount of work required to produce and inspect the in vivo dosimetry reports (a time-consuming and labor-intensive process). In this paper we present an overview of the actions performed to implement an automated in vivo dosimetry solution clinically. We reimplemented the EPID dosimetry software and modified the acquisition software. Furthermore, we introduced new tools to periodically inspect the record-and-verify database and automatically run the EPID dosimetry software when needed. In 2012, 95% of our 3839 treatments scheduled for in vivo dosimetry were analyzed automatically (27,633 portal images of intensity-modulated radiotherapy (IMRT) fields, 5551 portal image data of VMAT arcs, and 2003 portal images of non-IMRT fields). The in vivo dosimetry verification results are available a few minutes after delivery and alerts are immediately raised when deviations outside tolerance levels are detected. After the clinical introduction of this automated solution, inspection of the detected deviations is the only remaining work. These newly developed tools are a major step forward towards full integration of in vivo EPID dosimetry in radiation oncology practice.
Practical radiation oncology | 2015
Ben J. Mijnheer; P. Gonzalez; I. Olaciregui-Ruiz; R. Rozendaal; Marcel van Herk; A. Mans
PURPOSE To assess the usefulness of electronic portal imaging device (EPID)-based 3-dimensional (3D) transit dosimetry in a radiation therapy department by analyzing a large set of dose verification results. METHODS AND MATERIALS In our institution, routine in vivo dose verification of all treatments is performed by means of 3D transit dosimetry using amorphous silicon EPIDs. The total 3D dose distribution is reconstructed using a back-projection algorithm and compared with the planned dose distribution using 3D gamma evaluation. Dose reconstruction and gamma evaluation software runs automatically in our clinic, and analysis results are (almost) immediately available. If a deviation exceeds our alert criteria, manual inspection is required. If necessary, additional phantom measurements are performed to separate patient-related errors from planning or delivery errors. Three-dimensional transit dosimetry results were analyzed per treatment site between 2012 and 2014 and the origin of the deviations was assessed. RESULTS In total, 4689 of 15,076 plans (31%) exceeded the alert criteria between 2012 and 2014. These alerts were patient-related and attributable to limitations of our back-projection and dose calculation algorithm or to external sources. Clinically relevant deviations were detected for approximately 1 of 430 patient treatments. Most of these errors were because of anatomical changes or deviations from the routine clinical procedure and would not have been detected by pretreatment verification. Although cone beam computed tomography scans yielded information about anatomical changes, their effect on the dose delivery was assessed quantitatively by means of 3D in vivo dosimetry. CONCLUSIONS EPID-based transit dosimetry is a fast and efficient dose verification technique. It provides more useful information and is less time-consuming than pretreatment verification measurements of intensity modulated radiation therapy and volumetric modulated arc therapy. Large-scale implementation of 3D transit dosimetry is therefore a powerful method to guarantee safe dose delivery during radiation therapy.
Medical Physics | 2016
H. Spreeuw; R. Rozendaal; I. Olaciregui-Ruiz; P. Gonzalez; A. Mans; Ben J. Mijnheer; Marcel van Herk
PURPOSE Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of this study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. METHODS The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. RESULTS The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took 266 ± 11 ms on a dual octocore Intel Xeon E5-2630 CPU running at 2.40 GHz. The introduced delivery errors were detected after 5-10 s irradiation time. CONCLUSIONS A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for two different kinds of gross delivery errors. Thus, online 3D dose verification has been technologically achieved.
Radiotherapy and Oncology | 2014
R. Rozendaal; Ben J. Mijnheer; Marcel van Herk; A. Mans
PURPOSE To relate the results of γ-analysis and dose-volume histogram (DVH) analysis of the PTV for detecting dose deviations with in vivo dosimetry for two treatment sites. METHODS AND MATERIALS In vivo 3D dose distributions were reconstructed for 722 fractions of 200 head-and-neck (H&N) VMAT treatments and 183 fractions of 61 lung IMRT plans. The reconstructed and planned dose distributions in the PTV were compared using (a) the γ-distribution and (b) the differences in D2, D50 and D98 between the two dose distributions. Using pre-defined tolerance levels, all fractions were classified as deviating or not deviating by both methods. The mutual agreement, the sensitivity and the specificity of the two methods were compared. RESULTS For lung IMRT, the classification of the fractions was nearly identical for γ- and DVH-analyses of the PTV (94% agreement) and the sensitivity and specificity were comparable for both methods. Less agreement (80%) was found for H&N VMAT, while γ-analysis was both less sensitive and less specific. CONCLUSIONS DVH- and γ-analyses perform nearly equal in finding dose deviations in the PTV for lung IMRT treatments; for H&N VMAT treatments, DVH-analysis is preferable. As a result of this study, a smooth transition to using DVH-analysis clinically for detecting in vivo dose deviations in the PTV is within reach.
Radiotherapy and Oncology | 2015
R. Rozendaal; Ben J. Mijnheer; O. Hamming-Vrieze; A. Mans; Marcel van Herk
BACKGROUND AND PURPOSE Target dose verification for VMAT treatments of head-and-neck (H&N) cancer using 3D in vivo EPID dosimetry is expected to be affected by daily anatomical changes. By including these anatomical changes through cone-beam CT (CBCT) information, the magnitude of this effect is investigated. MATERIALS AND METHODS For 20 VMAT-treated H&N cancer patients, all plan-CTs (pCTs), 633 CBCTs and 1266 EPID movies were used to compare four dose distributions per fraction: treatment planning system (TPS) calculated dose and EPID reconstructed in vivo dose, both determined using the pCT and using the CBCT. D2, D50 and D98 of the planning target volume (PTV) were determined per dose distribution. RESULTS When including daily anatomical information, D2, D50 and D98 of the PTV change on average by 0.0±0.4% according to TPS calculations; the standard deviation of the difference between EPID and TPS target dose changes from 2.5% (pCT) to 2.1% (CBCT). Small time trends are seen for both TPS and EPID dose distributions when using the pCT, which disappear when including CBCT information. CONCLUSIONS Daily anatomical changes hardly influence the target dose distribution for H&N VMAT treatments according to TPS recalculations. Including CBCT information in EPID dose reconstructions slightly improves the agreement with TPS calculations.
Journal of Physics: Conference Series | 2013
B.J. Mijnheer; I. Olaciregui-Ruiz; R. Rozendaal; J.J. Sonke; H. Spreeuw; R. Tielenburg; M. van Herk; R.E. Vijlbrief; A. Mans
In this paper the various approaches of EPID-based in vivo IMRT and VMAT dose verification, and their clinical implementation, are described. It will be shown that EPID-based in vivo dosimetry plays an important role in the total chain of verification procedures in a radiotherapy department. EPID-based dosimetry, in combination with in-room imaging, is a fast and accurate tool for 3D in vivo verification of VMAT delivery. EPID-based in vivo dosimetry provides clinically more useful information and is less time consuming than patient-specific pre-treatment dose verification. In addition to accurate 3D dose verification, in vivo EPID-based dosimetry will also detect major errors in the dose received by individual patients, and provides a safety net for advanced treatments such as IMRT and VMAT.
Journal of Physics: Conference Series | 2015
B.J. Mijnheer; I. Olaciregui-Ruiz; R. Rozendaal; H. Spreeuw; M van Herk; A. Mans
3D in vivo dose verification using a-Si EPIDs is performed routinely in our institution for almost all RT treatments. The EPID-based 3D dose distribution is reconstructed using a back-projection algorithm and compared with the planned dose distribution using 3D gamma evaluation. Dose-reconstruction and gamma-evaluation software runs automatically, and deviations outside the alert criteria are immediately available and investigated, in combination with inspection of cone-beam CT scans. The implementation of our 3D EPID- based in vivo dosimetry approach was able to replace pre-treatment verification for more than 90% of the patient treatments. Clinically relevant deviations could be detected for approximately 1 out of 300 patient treatments (IMRT and VMAT). Most of these errors were patient related anatomical changes or deviations from the routine clinical procedure, and would not have been detected by pre-treatment verification. Moreover, 3D EPID-based in vivo dose verification is a fast and accurate tool to assure the safe delivery of RT treatments. It provides clinically more useful information and is less time consuming than pre-treatment verification measurements. Automated 3D in vivo dosimetry is therefore a prerequisite for large-scale implementation of patient-specific quality assurance of RT treatments.
Physics in Medicine and Biology | 2017
I Torres-Xirau; I. Olaciregui-Ruiz; R. Rozendaal; P. Gonzalez; B.J. Mijnheer; J-J Sonke; U. Van der Heide; A. Mans
In external beam radiotherapy, electronic portal imaging devices (EPIDs) are frequently used for pre-treatment and for in vivo dose verification. Currently, various MR-guided radiotherapy systems are being developed and clinically implemented. Independent dosimetric verification is highly desirable. For this purpose we adapted our EPID-based dose verification system for use with the MR-Linac combination developed by Elekta in cooperation with UMC Utrecht and Philips. In this study we extended our back-projection method to cope with the presence of an extra attenuating medium between the patient and the EPID. Experiments were performed at a conventional linac, using an aluminum mock-up of the MRI scanner housing between the phantom and the EPID. For a 10 cm square field, the attenuation by the mock-up was 72%, while 16% of the remaining EPID signal resulted from scattered radiation. 58 IMRT fields were delivered to a 20 cm slab phantom with and without the mock-up. EPID reconstructed dose distributions were compared to planned dose distributions using the [Formula: see text]-evaluation method (global, 3%, 3 mm). In our adapted back-projection algorithm the averaged [Formula: see text] was [Formula: see text], while in the conventional it was [Formula: see text]. Dose profiles of several square fields reconstructed with our adapted algorithm showed excellent agreement when compared to TPS.
Journal of Applied Clinical Medical Physics | 2015
H. Spreeuw; R. Rozendaal; Priscilla Camargo; A. Mans; Markus Wendling; I. Olaciregui-Ruiz; Jan-Jakob Sonke; Marcel van Herk; Ben J. Mijnheer
Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high‐energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel‐to‐dose conversion for the situation without wedge is used. A possible solution would be to consider a wedged beam as another photon beam quality requiring separate beam modeling of the dose calculation algorithm. The aim of this study was to investigate a more practical solution: to make aSi EPID‐based dosimetry models also applicable for wedged beams without an extra commissioning effort of the parameters of the model. For this purpose two energy‐dependent wedge multiplication factors have been introduced to be applied for portal images taken with and without a patient/phantom in the beam. These wedge multiplication factors were derived from EPID and ionization chamber measurements at the EPID level for wedged and nonwedged beams, both with and without a polystyrene slab phantom in the beam. This method was verified for an EPID dosimetry model used for wedged beams at three photon beam energies (6, 10, and 18 MV) by comparing dose values reconstructed in a phantom with data provided by a treatment planning system (TPS), as a function of field size, depth, and off‐axis distance. Generally good agreement, within 2%, was observed for depths between dose maximum and 15 cm. Applying the new model to EPID dose measurements performed during ten breast cancer patient treatments with wedged 6 MV photon beams showed that the average isocenter underdosage of 5.3% was reduced to 0.4%. Gamma‐evaluation (global 3%/3 mm) of these in vivo data showed an increase in percentage of points with γ≤1 from 60.2% to 87.4%, while γmean reduced from 1.01 to 0.55. It can be concluded that, for wedged beams, the multiplication of EPID pixel values with an energy‐dependent correction factor provides good agreement between dose values determined by an EPID and a TPS, indicating the usefulness of such a practical solution. PACS numbers: 87.55.km, 87.55.kd, 87.55.Qr, 87.56a.ng
Medical Physics | 2014
B.J. Mijnheer; A. Mans; I. Olaciregui-Ruiz; R. Rozendaal; H. Spreeuw; M. van Herk
PURPOSE To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. METHODS A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is done offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. RESULTS The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. CONCLUSION The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.