Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian Moore is active.

Publication


Featured researches published by Ian Moore.


The Plant Cell | 2000

A Rab1 GTPase Is Required for Transport between the Endoplasmic Reticulum and Golgi Apparatus and for Normal Golgi Movement in Plants

Henri Batoko; Huanquan Zheng; Chris Hawes; Ian Moore

We describe a green fluorescent protein (GFP)–based assay for investigating membrane traffic on the secretory pathway in plants. Expression of AtRab1b(N121I), predicted to be a dominant inhibitory mutant of the Arabidopsis Rab GTPase AtRab1b, resulted in accumulation of a secreted GFP marker in an intracellular reticulate compartment reminiscent of the endoplasmic reticulum. This accumulation was alleviated by coexpressing wild-type AtRab1b but not AtRab8c. When a Golgi-targeted and N-glycosylated variant of GFP was coexpressed with AtRab1b(N121I), the variant also accumulated in a reticulate network and an endoglycosidase H–sensitive population appeared. Unexpectedly, expression of AtRab1b(N121I), but not of the wild-type AtRab1b, resulted in a reduction or cessation of vectorial Golgi movement, an effect that was reversed by coexpression of the wild type. We conclude that AtRab1b function is required for transport from the endoplasmic reticulum to the Golgi apparatus and suggest that this process may be coupled to the control of Golgi movement.


The Plant Cell | 2004

Structure-Function Analysis of the Presumptive Arabidopsis Auxin Permease AUX1

Ranjan Swarup; Joanna Kargul; Alan Marchant; Daniel Zadik; Abidur Rahman; Rebecca F. Mills; Anthony Yemm; Sean T. May; Lorraine E. Williams; Paul A. Millner; Seiji Tsurumi; Ian Moore; Richard M. Napier; Ian D. Kerr; Malcolm J. Bennett

We have investigated the subcellular localization, the domain topology, and the amino acid residues that are critical for the function of the presumptive Arabidopsis thaliana auxin influx carrier AUX1. Biochemical fractionation experiments and confocal studies using an N-terminal yellow fluorescent protein (YFP) fusion observed that AUX1 colocalized with plasma membrane (PM) markers. Because of its PM localization, we were able to take advantage of the steep pH gradient that exists across the plant cell PM to investigate AUX1 topology using YFP as a pH-sensitive probe. The YFP-coding sequence was inserted in selected AUX1 hydrophilic loops to orient surface domains on either apoplastic or cytoplasmic faces of the PM based on the absence or presence of YFP fluorescence, respectively. We were able to demonstrate in conjunction with helix prediction programs that AUX1 represents a polytopic membrane protein composed of 11 transmembrane spanning domains. In parallel, a large aux1 allelic series containing null, partial-loss-of-function, and conditional mutations was characterized to identify the functionally important domains and amino acid residues within the AUX1 polypeptide. Whereas almost all partial-loss-of-function and null alleles cluster in the core permease region, the sole conditional allele aux1-7 modifies the function of the external C-terminal domain.


Nature | 2007

An ARF-GEF acting at the Golgi and in selective endocytosis in polarized plant cells

Ooi-kock Teh; Ian Moore

Circumstantial evidence suggests that intracellular membrane trafficking pathways diversified independently in the plant kingdom, but documented examples are rare. ARF-GEFs (guanine-nucleotide exchange factors for ADP-ribosylation factor GTPases) are essential for vesicular trafficking in all eukaryotic kingdoms, but of the eight ARF-GEF families, only the ancestral BIG and GBF types are found in plants. Whereas fungal and animal GBF proteins perform conserved functions at the Golgi, the Arabidopsis thaliana GBF protein GNOM is thought to act in only the process of recycling from endosomes. We now show that the related Arabidopsis GBF protein GNOM-LIKE1 (GNL1) has an ancestral function at the Golgi but is also required for selective internalization from the plasma membrane in the presence of brefeldin A (BFA). We identified gnl1 mutants that accumulated biosynthetic and recycling endoplasmic reticulum markers in enlarged internal compartments. Notably, in the absence of functional GNL1, Golgi stacks were rendered sensitive to the selective ARF-GEF inhibitor BFA, which caused them to fuse with the endoplasmic reticulum. Furthermore, in BFA-treated gnl1 roots, the internalization of a polar plasma-membrane marker, the auxin efflux carrier PIN2, was selectively inhibited. Thus, GNL1 is a BFA-resistant GBF protein that functions with a BFA-sensitive ARF-GEF both at the Golgi and in selective endocytosis, but not in recycling from endosomes. We propose that the evolution of endocytic trafficking in plants was accompanied by neofunctionalization within the GBF family, whereas in other kingdoms it occurred independently by elaboration of additional ARF-GEF families.


The Plant Cell | 2008

Rab-A2 and Rab-A3 GTPases Define a trans-Golgi Endosomal Membrane Domain in Arabidopsis That Contributes Substantially to the Cell Plate

Cheung-Ming Chow; Hélia Neto; Camille Foucart; Ian Moore

The Ypt3/Rab11/Rab25 subfamily of Rab GTPases has expanded greatly in Arabidopsis thaliana, comprising 26 members in six provisional subclasses, Rab-A1 to Rab-A6. We show that the Rab-A2 and Rab-A3 subclasses define a novel post-Golgi membrane domain in Arabidopsis root tips. The Rab-A2/A3 compartment was distinct from but often close to Golgi stacks and prevacuolar compartments and partly overlapped the VHA-a1 trans-Golgi compartment. It was also sensitive to brefeldin A and accumulated FM4-64 before prevacuolar compartments did. Mutations in RAB-A2a that were predicted to stabilize the GDP- or GTP-bound state shifted the location of the protein to the Golgi or plasma membrane, respectively. In mitosis, KNOLLE accumulated principally in the Rab-A2/A3 compartment. During cytokinesis, Rab-A2 and Rab-A3 proteins localized precisely to the growing margins of the cell plate, but VHA-a1, GNOM, and prevacuolar markers were excluded. Inducible expression of dominant-inhibitory mutants of RAB-A2a resulted in enlarged, polynucleate, meristematic cells with cell wall stubs. The Rab-A2/A3 compartment, therefore, is a trans-Golgi compartment that communicates with the plasma membrane and early endosomal system and contributes substantially to the cell plate. Despite the unique features of plant cytokinesis, membrane traffic to the division plane exhibits surprising molecular similarity across eukaryotic kingdoms in its reliance on Ypt3/Rab11/Rab-A GTPases.


Journal of Cell Science | 2004

AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells

Amanda M. Kotzer; Federica Brandizzi; Ulla Neumann; Nadine Paris; Ian Moore; Chris Hawes

Rab GTPases are universal key regulators of intracellular secretory trafficking events. In particular, Rab 5 homologues have been implicated in endocytic events and in the vacuolar pathway. In this study, we investigate the location and function of a member of this family, AtRabF2b (Ara7) in tobacco (Nicotiana tabacum) leaf epidermal cells using a live cell imaging approach. Fluorescent-tagged AtRabF2b[wt] localized to the prevacuolar compartment and Golgi apparatus, as determined by coexpression studies with fluorescent markers for these compartments. Mutations that impair AtRabF2b function also alter the subcellular location of the GTPase. In addition, coexpression studies of the protein with the vacuole-targeted aleurain-green fluorescent protein (GFP) and rescue experiments with wild-type AtRabF2b indicate that the dominant-negative mutant of AtRabF2b causes the vacuolar marker to be secreted to the apoplast. Our results indicate a clear role of AtRabF2b in the vacuolar trafficking pathway.


The Plant Cell | 2002

The Abscisic Acid–Related SNARE Homolog NtSyr1 Contributes to Secretion and Growth: Evidence from Competition with Its Cytosolic Domain

Danny Geelen; Barbara Leyman; Henri Batoko; Gian Pietro Di Sansebastiano; Ian Moore; Michael R. Blatt

Syntaxins and other SNARE proteins are crucial for intracellular vesicle trafficking, fusion, and secretion. Previously, we isolated the syntaxin-related protein NtSyr1 (NtSyp121) from tobacco in a screen for abscisic acid–related signaling elements, demonstrating its role in determining the abscisic acid sensitivity of K+ and Cl− channels in stomatal guard cells. NtSyr1 is localized to the plasma membrane and is expressed normally throughout the plant, especially in root tissues, suggesting that it might contribute to cellular homeostasis as well as to signaling. To explore its functions in vivo further, we examined stably transformed lines of tobacco that expressed various constructs of NtSyr1, including the full-length protein and a truncated fragment, Sp2, corresponding to the cytosolic domain shown previously to be active in suppressing ion channel response to abscisic acid. Constitutively overexpressing NtSyr1 yielded uniformly high levels of protein (>10 times the wild-type levels) and was associated with a significant enhancement of root growth in seedlings but not with any obvious phenotype in mature, well-watered plants. Similar transformations with constructs encoding the Sp2 fragment of NtSyr1 showed altered leaf morphology but gave only low levels of Sp2 fragment, suggesting a strong selective pressure against plants expressing this protein. High expression of the Sp2 fragment was achieved in stable transformants under the control of a dexamethasone-inducible promoter. Sp2 expression was correlated positively with altered cellular and tissue morphology in leaves and roots and with a cessation of growth in seedlings. Overexpression of the full-length NtSyr1 protein rescued the wild-type phenotype, even in plants expressing high levels of the Sp2 fragment, supporting the idea that the Sp2 fragment interfered specifically with NtSyr1 function by competing with NtSyr1 for its binding partners. To explore NtSyr1 function in secretion, we used a green fluorescent protein (GFP)–based section assay. When a secreted GFP marker was coexpressed with Sp2 in tobacco leaves, GFP fluorescence was retained in cytosolic reticulate and punctate structures. In contrast, in plants coexpressing secreted GFP and NtSyr1 or secreted GFP alone, no GFP fluorescence accumulated within the cells. A new yellow fluorescent protein–based secretion marker was used to show that the punctate structures labeled in the presence of Sp2 colocalized with a Golgi marker. These structures were not labeled in the presence of a dominant Rab1 mutant that inhibited transport from the endoplasmic reticulum to the Golgi. We propose that NtSyr1 functions as an element in SNARE-mediated vesicle trafficking to the plasma membrane and is required for cellular growth and homeostasis.


The Plant Cell | 2005

A Rab-E GTPase Mutant Acts Downstream of the Rab-D Subclass in Biosynthetic Membrane Traffic to the Plasma Membrane in Tobacco Leaf Epidermis

Huanquan Zheng; Luísa Camacho; Edmund G.-T. Wee; Henri Batoko; Julia Legen; Christopher J. Leaver; Rui Malhó; Patrick J. Hussey; Ian Moore

The function of the Rab-E subclass of plant Rab GTPases in membrane traffic was investigated using a dominant-inhibitory mutant (RAB-E1d[NI]) of Arabidopsis thaliana RAB-E1d and in vivo imaging approaches that have been used to characterize similar mutants in the plant Rab-D2 and Rab-F2 subclasses. RAB-E1d[NI] inhibited the transport of a secreted green fluorescent protein marker, secGFP, but in contrast with dominant-inhibitory RAB-D2 or RAB-F2 mutants, it did not affect the transport of Golgi or vacuolar markers. Quantitative imaging revealed that RAB-E1d[NI] caused less intracellular secGFP accumulation than RAB-D2a[NI], a dominant-inhibitory mutant of a member of the Arabidopsis Rab-D2 subclass. Furthermore, whereas RAB-D2a[NI] caused secGFP to accumulate exclusively in the endoplasmic reticulum, RAB-E1d[NI] caused secGFP to accumulate additionally in the Golgi apparatus and a prevacuolar compartment that could be labeled by FM4-64 and yellow fluorescent protein (YFP)–tagged Arabidopsis RAB-F2b. Using the vacuolar protease inhibitor E64-d, it was shown that some secGFP was transported to the vacuole in control cells and in the presence of RAB-E1d[NI]. Consistent with the hypothesis that secGFP carries a weak vacuolar-sorting determinant, it was shown that a secreted form of DsRed reaches the apoplast without appearing in the prevacuolar compartment. When fused to RAB-E1d, YFP was targeted specifically to the Golgi via a saturable nucleotide- and prenylation-dependent mechanism but was never observed on the prevacuolar compartment. We propose that RAB-E1d[NI] inhibits the secretory pathway at or after the Golgi, causing an accumulation of secGFP in the upstream compartments and an increase in the quantity of secGFP that enters the vacuolar pathway.


The EMBO Journal | 2010

Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis

Yohann Boutté; Márcia Frescatada-Rosa; Shuzhen Men; Cheung-Ming Chow; Kazuo Ebine; Anna Gustavsson; Lenore Johansson; Takashi Ueda; Ian Moore; Gerd Jürgens; Markus Grebe

Cytokinesis represents the final stage of eukaryotic cell division during which the cytoplasm becomes partitioned between daughter cells. The process differs to some extent between animal and plant cells, but proteins of the syntaxin family mediate membrane fusion in the plane of cell division in diverse organisms. How syntaxin localization is kept in check remains elusive. Here, we report that localization of the Arabidopsis KNOLLE syntaxin in the plane of cell division is maintained by sterol‐dependent endocytosis involving a clathrin‐ and DYNAMIN‐RELATED PROTEIN1A‐dependent mechanism. On genetic or pharmacological interference with endocytosis, KNOLLE mis‐localizes to lateral plasma membranes after cell‐plate fusion. Fluorescence‐loss‐in‐photo‐bleaching and fluorescence‐recovery‐after‐photo‐bleaching experiments reveal lateral diffusion of GFP‐KNOLLE from the plane of division to lateral membranes. In an endocytosis‐defective sterol biosynthesis mutant displaying lateral KNOLLE diffusion, KNOLLE secretory trafficking remains unaffected. Thus, restriction of lateral diffusion by endocytosis may serve to maintain specificity of syntaxin localization during late cytokinesis.


Current Opinion in Plant Biology | 2008

The functions of Rab GTPases in plant membrane traffic

Astrid Ad Woollard; Ian Moore

Rab GTPases are important determinants of membrane identity and membrane targeting. Higher plants have evolved a unique set of Rab GTPases that presumably reflects the specific demands of plant cell trafficking. In recent years, significant progress has been made in identifying Rab GTPases involved in endosome organisation, cytokinesis and in post-Golgi traffic to the plasma membrane and vacuoles. These include members of the Rab-F1, Rab-F2, Rab-A1, Rab-A2 and Rab-A4 subclasses. Some important regulators or effectors have also been identified for Rab-F, Rab-A1 and Rab-A4 proteins. However, uncertainties remain about the trafficking pathways that connect the compartments in the trans-Golgi/prevacuolar/endosomal system and there is still little or no insight into the functions of several major subclasses within the Rab GTPase family.


Plant Molecular Biology | 1994

Cytokinin metabolism: implications for regulation of plant growth and development

Břetislav Brzobohatý; Ian Moore; Klaus Palme

This review describes recent advances in the study of cytokinin metabolism. It highlights how plant development is influenced by cytokinin synthesis, conjugation and conjugate hydrolysis, and what has been learned of the enzymes that regulate these processes. Although cytokinin metabolism and physiology are complex issues, some of the key enzymatic players are now being identified. This holds out the prospect of rapid progress in the near future. Just as much of what we know about the control of animal cell proliferation was learned by studying the cellular counterparts of viral oncogenes, so important information about the control of plant development by phytohormones has come from studying the genes of bacterial pathogens that subvert host phytohormone metabolism to their own advantage. We will focus on what has been learned from the use of such genes, and describe progress in identifying their functional counterparts in plants.

Collaboration


Dive into the Ian Moore's collaboration.

Top Co-Authors

Avatar

Chris Hawes

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar

Henri Batoko

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Palme

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Břetislav Brzobohatý

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiří Malbeck

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge