Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marketa Samalova is active.

Publication


Featured researches published by Marketa Samalova.


Mbio | 2012

Comparative Genome Analysis of Trichophyton rubrum and Related Dermatophytes Reveals Candidate Genes Involved in Infection

Diego Martinez; Brian G. Oliver; Yvonne Gräser; Jonathan M. Goldberg; Wenjun Li; Nilce M. Martinez-Rossi; Michel Monod; Ekaterina Shelest; Richard Barton; Elizabeth Birch; Axel A. Brakhage; Zehua Chen; Sarah J. Gurr; David I. Heiman; Joseph Heitman; Idit Kosti; Antonio Rossi; Sakina Saif; Marketa Samalova; Charles Winston Saunders; Terrance Shea; Richard C. Summerbell; Jun Xu; Qiandong Zeng; Bruce W. Birren; Christina A. Cuomo; Theodore C. White

ABSTRACT The major cause of athlete’s foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum. These species differ in host range, mating, and disease progression. The dermatophyte genomes are highly colinear yet contain gene family expansions not found in other human-associated fungi. Dermatophyte genomes are enriched for gene families containing the LysM domain, which binds chitin and potentially related carbohydrates. These LysM domains differ in sequence from those in other species in regions of the peptide that could affect substrate binding. The dermatophytes also encode novel sets of fungus-specific kinases with unknown specificity, including nonfunctional pseudokinases, which may inhibit phosphorylation by competing for kinase sites within substrates, acting as allosteric effectors, or acting as scaffolds for signaling. The dermatophytes are also enriched for a large number of enzymes that synthesize secondary metabolites, including dermatophyte-specific genes that could synthesize novel compounds. Finally, dermatophytes are enriched in several classes of proteases that are necessary for fungal growth and nutrient acquisition on keratinized tissues. Despite differences in mating ability, genes involved in mating and meiosis are conserved across species, suggesting the possibility of cryptic mating in species where it has not been previously detected. These genome analyses identify gene families that are important to our understanding of how dermatophytes cause chronic infections, how they interact with epithelial cells, and how they respond to the host immune response. IMPORTANCE Athlete’s foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete’s foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host’s immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease. Athlete’s foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete’s foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host’s immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease.


Traffic | 2006

Ratiometric Fluorescence-Imaging Assays of Plant Membrane Traffic Using Polyproteins

Marketa Samalova; Mark D. Fricker; Ian Moore

Fluorescent protein markers are widely used to report plant membrane traffic; however, effective protocols to quantify fluorescence or marker expression are lacking. Here the 20 residue self‐cleaving 2A peptide from Foot and Mouth Disease Virus was used to construct polyproteins that expressed a trafficked marker in fixed stoichiometry with a reference protein in a different cellular compartment. Various pairs of compartments were simultaneously targeted. Together with a bespoke image analysis tool, these constructs allowed biosynthetic membrane traffic to be assayed with markedly improved sensitivity, dynamic range and statistical significance using protocols compatible with the common plant transfection and transgenic systems. As marker and effector expression could be monitored in populations or individual cells, saturation phenomena could be avoided and stochastic or epigenetic influences could be controlled. Surprisingly, mutational analysis of the ratiometric assay constructs revealed that the 2A peptide was dispensable for efficient cleavage of polyproteins carrying a single internal signal peptide, whereas the signal peptide was essential. In contrast, a construct bearing two signal peptide/anchors required 2A for efficient separation and stability, but 2A caused the amino‐terminal moiety of such fusions to be mis‐sorted to the vacuole. A model to account for the behaviour of 2A in these and other studies in plants is proposed.


Journal of Cell Science | 2009

Genetic evidence that the higher plant Rab-D1 and Rab-D2 GTPases exhibit distinct but overlapping interactions in the early secretory pathway

Hazel Pinheiro; Marketa Samalova; Niko Geldner; Joanne Chory; Alberto Martinez; Ian Moore

GTPases of the Rab1 subclass are essential for membrane traffic between the endoplasmic reticulum (ER) and Golgi complex in animals, fungi and plants. Rab1-related proteins in higher plants are unusual because sequence comparisons divide them into two putative subclasses, Rab-D1 and Rab-D2, that are conserved in monocots and dicots. We tested the hypothesis that the Rab-D1 and Rab-D2 proteins of Arabidopsis represent functionally distinct groups. RAB-D1 and RAB-D2a each targeted fluorescent proteins to the same punctate structures associated with the Golgi stacks and trans-Golgi-network. Dominant-inhibitory N121I mutants of each protein inhibited traffic of diverse cargo proteins at the ER but they appeared to act via distinct biochemical pathways as biosynthetic traffic in cells expressing either of the N121I mutants could be restored by coexpressing the wild-type form of the same subclass but not the other subclass. The same interaction was observed in transgenic seedlings expressing RAB-D1 [N121I]. Insertional mutants confirmed that the three Arabidopsis Rab-D2 genes were extensively redundant and collectively performed an essential function that could not be provided by RAB-D1, which was non-essential. However, plants lacking RAB-D1, RAB-D2b and RAB-D2c were short and bushy with low fertility, indicating that the Rab-D1 and Rab-D2 subclasses have overlapping functions.


New Phytologist | 2014

Robust anti‐oxidant defences in the rice blast fungus Magnaporthe oryzae confer tolerance to the host oxidative burst

Marketa Samalova; Andreas J. Meyer; Sarah J. Gurr; Mark D. Fricker

Plants respond to pathogen attack via a rapid burst of reactive oxygen species (ROS). However, ROS are also produced by fungal metabolism and are required for the development of infection structures in Magnaporthe oryzae. To obtain a better understanding of redox regulation in M. oryzae, we measured the amount and redox potential of glutathione (E(GSH)), as the major cytoplasmic anti-oxidant, the rates of ROS production, and mitochondrial activity using multi-channel four-dimensional (x,y,z,t) confocal imaging of Grx1-roGFP2 and fluorescent reporters during spore germination, appressorium formation and infection. High levels of mitochondrial activity and ROS were localized to the growing germ tube and appressorium, but E(GSH) was highly reduced and tightly regulated during development. Furthermore, germlings were extremely resistant to external H2O2 exposure ex planta. EGSH remained highly reduced during successful infection of the susceptible rice cultivar CO39. By contrast, there was a dramatic reduction in the infection of resistant (IR68) rice, but the sparse hyphae that did form also maintained a similar reduced E(GSH). We conclude that M. oryzae has a robust anti-oxidant defence system and maintains tight control of EGSH despite substantial oxidative challenge. Furthermore, the magnitude of the host oxidative burst alone does not stress the pathogen sufficiently to prevent infection in this pathosystem.


New Phytologist | 2013

Nitric oxide generated by the rice blast fungus Magnaporthe oryzae drives plant infection

Marketa Samalova; Jasper Johnson; Mary Illes; Steven Kelly; Mark D. Fricker; Sarah J. Gurr

Plant-derived nitric oxide (NO) triggers defence, priming the onset of the hypersensitive response and restricting pathogen ingress during incompatibility. However, little is known about the role of pathogen-produced NO during pre-infection development and infection. We sought evidence for NO production by the rice blast fungus during early infection. NO production was measured using fluorescence of DAR-4M and the role of NO assessed using NO scavengers. The synthesis of NO was investigated by targeted knockout of genes potentially involved in NO synthesis, including nitric oxide synthase-like genes (NOL2 and NOL3) and nitrate (NIA1) and nitrite reductase (NII1), generating single and double Δnia1Δnii1, Δnia1Δnol3, and Δnol2Δnol3 mutants. We demonstrate that Magnaporthe oryzae generates NO during germination and in early development. Removal of NO delays germling development and reduces disease lesion numbers. NO is not generated by the candidate proteins tested, nor by other arginine-dependent NO systems, by polyamine oxidase activity or non-enzymatically by low pH. Furthermore, we show that, while NIA1 and NII1 are essential for nitrate assimilation, NIA1, NII1, NOL2 and NOL3 are all dispensable for pathogenicity. Development of M. oryzae and initiation of infection are critically dependent on fungal NO synthesis, but its mode of generation remains obscure.


Cellular Microbiology | 2017

The β-1,3-glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium-mediated plant infection

Marketa Samalova; Hugo Mélida; Francisco Vilaplana; Vincent Bulone; Darren M. Soanes; Nicholas J. Talbot; Sarah J. Gurr

The fungal wall is pivotal for cell shape and function, and in interfacial protection during host infection and environmental challenge. Here, we provide the first description of the carbohydrate composition and structure of the cell wall of the rice blast fungus Magnaporthe oryzae. We focus on the family of glucan elongation proteins (Gels) and characterize five putative β‐1,3‐glucan glucanosyltransferases that each carry the Glycoside Hydrolase 72 signature. We generated targeted deletion mutants of all Gel isoforms, that is, the GH72+, which carry a putative carbohydrate‐binding module, and the GH72− Gels, without this motif. We reveal that M. oryzae GH72+ GELs are expressed in spores and during both infective and vegetative growth, but each individual Gel enzymes are dispensable for pathogenicity. Further, we demonstrated that a Δgel1Δgel3Δgel4 null mutant has a modified cell wall in which 1,3‐glucans have a higher degree of polymerization and are less branched than the wild‐type strain. The mutant showed significant differences in global patterns of gene expression, a hyper‐branching phenotype and no sporulation, and thus was unable to cause rice blast lesions (except via wounded tissues). We conclude that Gel proteins play significant roles in structural modification of the fungal cell wall during appressorium‐mediated plant infection.


Methods in Cell Biology | 2008

Quantitative and Qualitative Analysis of Plant Membrane Traffic Using Fluorescent Proteins

Marketa Samalova; Mark D. Fricker; Ian Moore

Fluorescent proteins have had a great impact on the way in which plant membrane traffic is studied. Here we review the uses to which these molecules have been put in this field of research and discuss the advantages and pitfalls of particular fluorescent protein derivatives in various applications and plant species. We discuss in detail the need for quantitative estimates of expression level and the potential of fluorescent proteins for quantitative assays of biosynthetic membrane traffic. Detailed descriptions and protocols are provided for the use of the newly developed 2A-based ratiometric polyprotein probes of membrane traffic in conjunction with semiautomated image analysis software packages for quantitative analyses. The ratiometric probes and software are available from the authors.


Plant Journal | 2005

New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis.

Judith Craft; Marketa Samalova; Célia Baroux; Helen E. Townley; Alberto Martinez; Ian Jepson; Miltos Tsiantis; Ian Moore


Plant Journal | 2006

Transactivated and chemically inducible gene expression in plants

Ian Moore; Marketa Samalova; Smita Kurup


Plant Journal | 2005

pOp6/LhGR: a stringently regulated and highly responsive dexamethasone‐inducible gene expression system for tobacco

Marketa Samalova; Bretislav Brzobohaty; Ian Moore

Collaboration


Dive into the Marketa Samalova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franco Cacialli

London Centre for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge