Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ichiro Yajima is active.

Publication


Featured researches published by Ichiro Yajima.


Dermatology Research and Practice | 2012

RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signaling in Malignant Melanoma Progression and Therapy

Ichiro Yajima; Mayuko Y. Kumasaka; Nguyen Dinh Thang; Yuji Goto; Kozue Takeda; Osamu Yamanoshita; Machiko Iida; Nobutaka Ohgami; Haruka Tamura; Yoshiyuki Kawamoto; Masashi Kato

Cutaneous malignant melanoma is one of the most serious skin cancers and is highly invasive and markedly resistant to conventional therapy. Melanomagenesis is initially triggered by environmental agents including ultraviolet (UV), which induces genetic/epigenetic alterations in the chromosomes of melanocytes. In human melanomas, the RAS/RAF/MEK/ERK (MAPK) and the PI3K/PTEN/AKT (AKT) signaling pathways are two major signaling pathways and are constitutively activated through genetic alterations. Mutations of RAF, RAS, and PTEN contribute to antiapoptosis, abnormal proliferation, angiogenesis, and invasion for melanoma development and progression. To find better approaches to therapies for patients, understanding these MAPK and AKT signaling mechanisms of melanoma development and progression is important. Here, we review MAPK and AKT signaling networks associated with melanoma development and progression.


Pigment Cell & Melanoma Research | 2008

The location of heart melanocytes is specified and the level of pigmentation in the heart may correlate with coat color

Ichiro Yajima; Lionel Larue

Melanocytes are mainly found in the skin and more rarely in other parts of the body, including the heart. We analyzed the localization of heart melanocytes and their levels of pigmentation in a series of mutant mice presenting different numbers of melanocytes and pigmentation in the skin. We found that melanocytes were localized in the valves (mitral, tricuspid, and aortic) and septa (ventricular and atrial). Moreover, the numbers of melanocytes in the heart appears to reflect that of the skin. Mice having a high or low level of pigmented cells and/or melanin in valves and septa have similar lifespan. In this respect, melanocytes found in the valves and septa of the heart are probably not essential in a healthy and non‐stressful environment.


Journal of skin cancer | 2011

Molecular Network Associated with MITF in Skin Melanoma Development and Progression

Ichiro Yajima; Mayuko Y. Kumasaka; Nguyen Dinh Thang; Yuji Goto; Kozue Takeda; Machiko Iida; Nobutaka Ohgami; Haruka Tamura; Osamu Yamanoshita; Yoshiyuki Kawamoto; Keiko Furukawa; Masashi Kato

Various environmental and genetic factors affect the development and progression of skin cancers including melanoma. Melanoma development is initially triggered by environmental factors including ultraviolet (UV) light, and then genetic/epigenetic alterations occur in skin melanocytes. These first triggers alter the conditions of numerous genes and proteins, and they induce and/or reduce gene expression and activate and/or repress protein stability and activity, resulting in melanoma progression. Microphthalmia-associated transcription factor (MITF) is a master regulator gene of melanocyte development and differentiation and is also associated with melanoma development and progression. To find better approaches to molecular-based therapies for patients, understanding MITF function in skin melanoma development and progression is important. Here, we review the molecular networks associated with MITF in skin melanoma development and progression.


PLOS ONE | 2010

c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines

Yuichiro Ohshima; Ichiro Yajima; Kozue Takeda; Machiko Iida; Mayuko Y. Kumasaka; Yoshinari Matsumoto; Masashi Kato

Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma.


Mechanisms of Development | 2003

Cloning and functional analysis of ascidian Mitf in vivo: insights into the origin of vertebrate pigment cells

Ichiro Yajima; Kosuke Endo; Shigeru Sato; Reiko Toyoda; Hiroshi Wada; Shigeki Shibahara; Takaharu Numakunai; Kazuho Ikeo; Takashi Gojobori; Colin R. Goding; Hiroaki Yamamoto

The microphthalmia-associated transcription factor (Mitf) is a basic-helix-loop-helix-leucine zipper (bHLH-ZIP) transcription factor essential for the development and function of all melanin-producing pigment cells in vertebrates. To elucidate the evolutionary history of Mitf and the antiquity of its association with pigment cells, we have isolated and characterized HrMitf, a sole member of the Mitf-TFE bHLH-ZIP subfamily in the ascidian Halocynthia roretzi. Maternal HrMitf mRNA is detected in the fertilized egg and in the animal hemisphere from 4-cell stage through the gastrula stage. From the neurula through the early tailbud stage, HrMitf is preferentially expressed in the pigment-lineage cells that express the lineage-specific melanogenesis genes tyrosinase (HrTyr) and Tyrp. Overexpression of HrMitf induced ectopic expression of HrTyr enzyme activity in mesenchymal cells where the same enzyme activity was induced by overexpression of HrPax3/7, suggesting that a part(s) of the Pax3-Mitf-tyrosinase gene regulatory cascade seen in vertebrate melanocytes is operative during ascidian embryogenesis. We also show HrMitf and mouse Mitf-A, a Mitf isoform abundantly expressed in pigmented epithelial cells, share similar functional characteristics. These results suggest antiquity of the association of the Mitf-TFE subfamily with pigment cells and may support the idea that acquisition of multiple promoters (isoforms) by an ancestral Mitf gene has allowed the evolution of multiple pigment cell types.


Journal of Dermatological Science | 2010

CD109 expression levels in malignant melanoma.

Yuichiro Ohshima; Ichiro Yajima; Mayuko Y. Kumasaka; Takeshi Yanagishita; Daisuke Watanabe; Masahide Takahashi; Yuji Inoue; Hironobu Ihn; Yoshinari Matsumoto; Masashi Kato

Yoshiki Tokura Department of Dermatology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan *Corresponding author at: Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo, Kyoto 606-8507, Japan. Tel.: +81 75 7513310/93 6917445; fax: +81 75 7613002/93 6910907 E-mail address: [email protected] (Kenji Kabashima).


Cancer Research | 2010

A Novel Mouse Model for De novo Melanoma

Mayuko Y. Kumasaka; Ichiro Yajima; Khaled Hossain; Machiko Iida; Toyonori Tsuzuki; Tamio Ohno; Masahide Takahashi; Masashi Yanagisawa; Masashi Kato

Nevus-associated melanomas arise from pre-existing benign lesions, but de novo melanomas can also develop in the absence of such lesions. Few studies have addressed the latter phenomenon because no animal models have been described in which melanomas clearly develop in a de novo manner. In this study, we have address this need in defining RFP-RET-transgenic mice (RET mice) as a mouse model for multi-step melanomagenesis that proceeds via tumor-free, benign, premalignant, and malignant stages. Melanomas from RET mice exhibited decreased expression levels of endothelin receptor B (Ednrb) compared with benign tumors. In RET mice that were heterozygous for Ednrb (Ednrb+/-;RET mice), >80% of the arising primary tumors were malignant. Life span after tumor development in the mice was significantly shorter than in RET mice. Lung metastasis after tumor development was significantly higher than in RET mice. The observed process of melanomagenesis in Ednrb+/-;RET mice, which proceeded without a pre-existing benign lesion, along with the emergent characteristics in the model after tumor development corresponded well with the formation of de novo melanoma in humans. Our findings define a novel transgenic mouse model for de novo melanoma and suggest that reduced expression of Ednrb might facilitate the development of de novo melanoma in humans.


Developmental Dynamics | 1999

Structure and developmental expression of the ascidian TRP gene: Insights into the evolution of pigment cell–specific gene expression

Shigeru Sato; Reiko Toyoda; You Katsuyama; Hidetoshi Saiga; Takaharu Numakunai; Kazuho Ikeo; Takashi Gojobori; Ichiro Yajima; Hiroaki Yamamoto

The tyrosinase family in vertebrates consists of three related melanogenic enzymes: tyrosinase, tyrosinase‐related protein‐1 (TRP‐1), and TRP‐2. These proteins control melanin production in pigment cells and play a crucial role in determining vertebrate coloration. We have isolated a gene from the ascidian Halocynthia roretzi which encodes a tyrosinase‐related protein (HrTRP) with 45–49% identity with vertebrate TRP‐1 and TRP‐2. The expression of the HrTRP gene in pigment lineage a8.25 cells starts at the early‐mid gastrula stage, which coincides with the stage when these cells are determined as pigment precursor cells; therefore, it provides the earliest pigment lineage‐specific marker, which enables us to trace the complete cell lineage leading to two pigment cells in the larval brain. In addition, the expression pattern of the HrTRP gene appears to share similar characteristics with the mouse TRP‐2 gene although structurally the HrTRP gene is more closely related to mammalian TRP‐1 genes. Based on these observations and on results from molecular phylogenetic and hybridization analyses, we suggest that triplication of the tyrosinase family occurred during the early radiation of chordates. Initially, duplication of an ancestral tyrosinase gene produced a single TRP gene before the urochordate and cephalochordate‐vertebrate divergence, and a subsequent duplication of the ancestral TRP gene in the vertebrate lineage gave rise to two TRP genes before the emergence of teleost fishes. Evolution of the melanin synthetic pathway and possible phylogenetic relationships among chordate pigment cells that accommodate the metabolic process are discussed. Dev Dyn 1999;215:225–237.


Cancer Epidemiology, Biomarkers & Prevention | 2011

Sunlight exposure-mediated DNA damage in young adults.

Masashi Kato; Machiko Iida; Yuji Goto; Takaaki Kondo; Ichiro Yajima

Background: Previous experimental studies showed that single ultraviolet B (UVB) light irradiation increased levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), a well-established biomarker of carcinogenesis and oxidative DNA damage, in epithelial cells in animals and humans. We conducted for the first time an epidemiologic study to investigate the correlations among levels of oxidative DNA damage, skin pigmentation, and sunlight exposure in human daily life. Methods: Digitalized skin pigmentation levels and creatinine-adjusted urinary 8-OHdG levels were examined in 127 healthy young adults aged 20 to 24 years and in hairless mice with normal pigmented skin (HL-mice; n = 20) and hyperpigmented skin (HL-HPS-mice; n = 20). Data obtained by a questionnaire were also analyzed for the 127 subjects. Results: Binary logistic regression analysis showed that increased sunlight intensity, but not sunlight-exposed time or sunlight-exposed skin area, was correlated with elevation in creatinine-adjusted urinary 8-OHdG levels. In contrast, increased skin pigmentation level, but not the use of sunscreen, was correlated with reduction in urinary 8-OHdG level in humans. UVB irradiation corresponding to several minutes of sunlight exposure significantly increased urinary 8-OHdG levels in HL-mice but not in HL-HPS-mice. Conclusions: We showed that increase in intensity of sunlight in human daily life increased levels of DNA damage. We also showed a protective effect of skin pigmentation on sunlight exposure–mediated DNA damage. Impact: We have provided more reliable evidence of routine sunlight exposure–mediated DNA damage in humans through the combination of epidemiologic and experimental studies. Cancer Epidemiol Biomarkers Prev; 20(8); 1622–8. ©2011 AACR.


PLOS ONE | 2012

Chronic Exposure to Low Frequency Noise at Moderate Levels Causes Impaired Balance in Mice

Haruka Tamura; Nobutaka Ohgami; Ichiro Yajima; Machiko Iida; Kyoko Ohgami; Noriko Fujii; Hiroyuki Itabe; Tastuya Kusudo; Hitoshi Yamashita; Masashi Kato

We are routinely exposed to low frequency noise (LFN; below 0.5 kHz) at moderate levels of 60–70 dB sound pressure level (SPL) generated from various sources in occupational and daily environments. LFN has been reported to affect balance in humans. However, there is limited information about the influence of chronic exposure to LFN at moderate levels for balance. In this study, we investigated whether chronic exposure to LFN at a moderate level of 70 dB SPL affects the vestibule, which is one of the organs responsible for balance in mice. Wild-type ICR mice were exposed for 1 month to LFN (0.1 kHz) and high frequency noise (HFN; 16 kHz) at 70 dB SPL at a distance of approximately 10–20 cm. Behavior analyses including rotarod, beam-crossing and footprint analyses showed impairments of balance in LFN-exposed mice but not in non-exposed mice or HFN-exposed mice. Immunohistochemical analysis showed a decreased number of vestibular hair cells and increased levels of oxidative stress in LFN-exposed mice compared to those in non-exposed mice. Our results suggest that chronic exposure to LFN at moderate levels causes impaired balance involving morphological impairments of the vestibule with enhanced levels of oxidative stress. Thus, the results of this study indicate the importance of considering the risk of chronic exposure to LFN at a moderate level for imbalance.

Collaboration


Dive into the Ichiro Yajima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shigeru Sato

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge