Il-Sug Chung
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Il-Sug Chung.
Applied Physics Letters | 2010
Il-Sug Chung; Jesper Mørk
A III–V/Si vertical-cavity in-plane-emitting laser structure is suggested and numerically investigated. This hybrid laser consists of a distributed Bragg reflector, a III–V active region, and a high-index-contrast grating (HCG) connected to an in-plane output waveguide. The HCG and the output waveguide are made in the Si layer of a silicon-on-insulator wafer by using Si-electronics-compatible processing. The HCG works as a highly-reflective mirror for vertical resonance and at the same time routes light to the in-plane output waveguide. Numerical simulations show superior performance compared to existing silicon light sources.
IEEE Journal of Quantum Electronics | 2010
Il-Sug Chung; V. Iakovlev; Alexei Sirbu; Alexandru Mereuta; Andrei Caliman; E. Kapon; Jesper Mørk
A widely-tunable single-mode 1.3 μm vertical-cavity surface-emitting laser structure incorporating a microelectromechanical system-tunable high-index-contrast subwavelength grating (HCG) mirror is suggested and numerically investigated. A linear tuning range of 100 nm and a wavelength tuning efficiency of 0.203 are predicted. The large tuning range and efficiency are attributed to the incorporation of the tuning air gap as part of the optical cavity and to the use of a short cavity structure. The short cavity length can be achieved by employing a HCG design of which the reflection mechanism does not rely on resonant coupling. The absence of resonance coupling leads to a 0.59 λ-thick penetration depth of the HCG and enables to use a 0.25 λ-thick tuning air gap underneath the HCG. This considerably reduces the effective cavity length, leading to larger tuning range and efficiency. The basic properties of this new structure are analyzed, and shown to be explained by analytical expressions that are derived in the paper. In this context, the penetration depth of the HCG is introduced and shown to be an important characteristic length scale. Throughout the tuning wavelength range, strong single mode operation was maintained and uniform output power is expected.
Optics Express | 2011
Luca Carletti; Radu Malureanu; Jesper Mørk; Il-Sug Chung
High-index contrast grating mirrors providing wave front control of the transmitted light as well as high reflectivity over a broad bandwidth are suggested and both numerically and experimentally investigated. General design rules to engineer these structures for different applications are derived. Such grating mirrors would have a significant impact on low cost laser fabrication, since a more efficient integration of optoelectronic modules can be achieved by avoiding expensive external lens systems.
Optics Express | 2010
Maciej Dems; Il-Sug Chung; Péter Nyakas; Svend Bischoff; Krassimir Panajotov
We show comparison of four different numerical methods for simulating Photonic-Crystal (PC) VCSELs. We present the theoretical basis behind each method and analyze the differences by studying a benchmark VCSEL structure, where the PC structure penetrates all VCSEL layers, the entire top-mirror DBR, a fraction of the top-mirror DBR or just the VCSEL cavity. The different models are evaluated by comparing the predicted resonance wavelengths and threshold gains for different hole diameters and pitches of the PC. The agreement between the models is relatively good, except for one model, which corresponds to the effective index method. The simulation results elucidate the strength and weaknesses of the analyzed methods; and outline the limits of applicability of the different models.
IEEE Photonics Technology Letters | 2013
Thor Ansbæk; Il-Sug Chung; E. S. Semenova; Kresten Yvind
We present the first tunable vertical-cavity surface-emitting laser (VCSEL) where the top distributed Bragg reflector has been completely substituted by an air-cladded high-index-contrast subwavelength grating (HCG) mirror. In this way, an extended cavity design can be realized by reducing the reflection at the semiconductor-air interface using an anti-reflective coating (ARC). We demonstrate how the ARC can be integrated in a monolithic structure by oxidizing AlGaAs with high Al-content. The HCG VCSEL has the potential to achieve polarization stable single-mode output with high tuning efficiency. The HCG VCSEL shows a total tuning range of 16 nm around an emission wavelength of 1060 nm with 1-mW output power.
Applied Optics | 2013
Kazuhiro Ikeda; Kazuma Takeuchi; Kentaro Takayose; Il-Sug Chung; Jesper Mørk; Hitoshi Kawaguchi
A polarization-independent, high-index contrast grating (HCG) with a single layer of cross stripes allowing simple fabrication is proposed. Since the cross stripes structure can be suspended in air by selectively wet-etching the layer below, all the layers can be grown at once when implemented for vertical-cavity surface-emitting lasers. We optimized the structure to have a broad and high reflectivity band centered at around 1 μm using a finite difference time domain method, and obtained an 80 nm high reflectivity band centered at 0.97 μm in which the reflectivity exceeded 99.5%. We also investigated the fabrication tolerances of the structure and found that, assuming careful optimizations of electron beam lithography for the precise grating width and dry-etching for the vertical sidewall, the suggested polarization-independent HCG can be fabricated using standard technologies.
Optics Express | 2014
Alireza Taghizadeh; Gyeong Cheol Park; Jesper Mørk; Il-Sug Chung
We suggest a new type of grating reflector denoted hybrid grating (HG) which shows large reflectivity in a broad wavelength range and has a structure suitable for realizing a vertical cavity laser with ultra-small modal volume. The properties of the grating reflector are investigated numerically and explained. The HG consists of an un-patterned III-V layer and a Si grating. The III-V layer has a thickness comparable to the grating layer, introduces more guided mode resonances and significantly increases the bandwidth of the reflector compared to the well-known high-index-contrast grating (HCG). By using an active III-V layer, a laser can be realized where the gain region is integrated into the mirror itself.
Optics Express | 2015
Alireza Taghizadeh; Jesper Mørk; Il-Sug Chung
We numerically investigate the properties of a hybrid grating structure acting as a resonator with ultrahigh quality factor. This reveals that the physical mechanism responsible for the resonance is quite different from the conventional guided mode resonance (GMR). The hybrid grating consists of a subwavelength grating layer and an un-patterned high-refractive-index cap layer, being surrounded by low index materials. Since the cap layer may include a gain region, an ultracompact laser can be realized based on the hybrid grating resonator, featuring many advantages over high-contrast-grating resonator lasers. The effect of fabrication errors and finite size of the structure is investigated to understand the feasibility of fabricating the proposed resonator.
Applied Physics Letters | 2015
Alireza Taghizadeh; Jesper Mørk; Il-Sug Chung
We show that in-plane (lateral) heterostructures realized in vertical cavities with high contrast grating reflectors can be used to significantly modify the anisotropic dispersion curvature, also interpreted as the photon effective mass. This design freedom enables exotic configurations of heterostructures and many interesting applications. The effects of the anisotropic photon effective mass on the mode confinement, mode spacing, and transverse modes are investigated. As a possible application, the method of boosting the speed of diode lasers by engineering the photon-photon resonance is discussed. Based on this platform, we propose a system of two laterally coupled cavities, which shows the breaking of parity-time symmetry in vertical cavity structures.
Photonics West: Integrated Optoelectronic Devices : Vertical-Cavity Surface-Emitting Lasers XIV | 2010
Philippe Gilet; Nicolas Olivier; Philippe Grosse; Karen Gilbert; A. Chelnokov; Il-Sug Chung; Jesper Mørk
In this article, we report our results on 980nm high-index-contrast subwavelength grating (HCG) VCSELs for optical interconnection applications. In our structure, a thin undoped HCG layer replaces a thick p-type Bragg mirror. The HCG mirror can feasibly achieve polarization-selective reflectivities close to 100%. The investigated structure consists of a HCG mirror with an underneath λ/4-thick oxide gap, four p-type GaAlAs/GaAs pairs for current spreading, three InGaAs/GaAs quantum wells, and an n-type GaAlAs/GaAs Bragg mirror. The HCG structure was defined by e-beam lithography and dry etching. The current oxide aperture and the oxide gap underneath the HCG were simultaneously formed by the selective wet oxidation process. Compared to air-gap high contrast grating mirrors demonstrated elsewhere, our grating mirrors are particular since they are supported by thinner λ/4 aluminium oxide layer, and thus are mechanically robust and thinner than usual designs. Sub-milliamp threshold currents and single-transverse-mode operation was obtained. A hero device exhibited maximum singlemode output power of more than 4 mW at room temperature and 1 mw at 70°C, which are the highest values ever reported from the HCG structures. These results build a bridge between a standard VCSEL and a hybrid laser on silicon, making them of potential use for the realization of silicon photonics.