Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Imogen Sparkes is active.

Publication


Featured researches published by Imogen Sparkes.


Nature Protocols | 2006

Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants

Imogen Sparkes; John Runions; Anne Kearns; Chris Hawes

Expression and tracking of fluorescent fusion proteins has revolutionized our understanding of basic concepts in cell biology. The protocol presented here has underpinned much of the in vivo results highlighting the dynamic nature of the plant secretory pathway. Transient transformation of tobacco leaf epidermal cells is a relatively fast technique to assess expression of genes of interest. These cells can be used to generate stable plant lines using a more time-consuming, cell culture technique. Transient expression takes from 2 to 4 days whereas stable lines are generated after approximately 2 to 4 months.


The Plant Cell | 2009

Movement and Remodeling of the Endoplasmic Reticulum in Nondividing Cells of Tobacco Leaves

Imogen Sparkes; John Runions; Chris Hawes; Lawrence R. Griffing

Using a novel analytical tool, this study investigates the relative roles of actin, microtubules, myosin, and Golgi bodies on form and movement of the endoplasmic reticulum (ER) in tobacco (Nicotiana tabacum) leaf epidermal cells. Expression of a subset of truncated class XI myosins, which interfere with the activity of native class XI myosins, and drug-induced actin depolymerization produce a more persistent network of ER tubules and larger persistent cisternae. The treatments differentially affect two persistent size classes of cortical ER cisternae, those >0.3 μm2 and those smaller, called punctae. The punctae are not Golgi, and ER remodeling occurs in the absence of Golgi bodies. The treatments diminish the mobile fraction of ER membrane proteins but not the diffusive flow of mobile membrane proteins. The results support a model whereby ER network remodeling is coupled to the directionality but not the magnitude of membrane surface flow, and the punctae are network nodes that act as foci of actin polymerization, regulating network remodeling through exploratory tubule growth and myosin-mediated shrinkage.


Plant Physiology | 2009

A Comparative Study of the Involvement of 17 Arabidopsis Myosin Family Members on the Motility of Golgi and Other Organelles

Dror Avisar; Mohamad Abu-Abied; Eduard Belausov; Einat Sadot; Chris Hawes; Imogen Sparkes

Gene families with multiple members are predicted to have individuals with overlapping functions. We examined all of the Arabidopsis (Arabidopsis thaliana) myosin family members for their involvement in Golgi and other organelle motility. Truncated fragments of all 17 annotated Arabidopsis myosins containing either the IQ tail or tail domains only were fused to fluorescent markers and coexpressed with a Golgi marker in two different plants. We tracked and calculated Golgi body displacement rate in the presence of all myosin truncations and found that tail fragments of myosins MYA1, MYA2, XI-C, XI-E, XI-I, and XI-K were the best inhibitors of Golgi body movement in the two plants. Tail fragments of myosins XI-B, XI-F, XI-H, and ATM1 had an inhibitory effect on Golgi bodies only in Nicotiana tabacum, while tail fragments of myosins XI-G and ATM2 had a slight effect on Golgi body motility only in Nicotiana benthamiana. The best myosin inhibitors of Golgi body motility were able to arrest mitochondrial movement too. No exclusive colocalization was found between these myosins and Golgi bodies in our system, although the excess of cytosolic signal observed could mask myosin molecules bound to the surface of the organelle. From the preserved actin filaments found in the presence of enhanced green fluorescent protein fusions of truncated myosins and the motility of myosin punctae, we conclude that global arrest of actomyosin-derived cytoplasmic streaming had not occurred. Taken together, our data suggest that the above myosins are involved, directly or indirectly, in the movement of Golgi and mitochondria in plant cells.


Journal of Experimental Botany | 2008

Truncated myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells: a genetic tool for the next generation

Imogen Sparkes; Nicholas A. Teanby; Chris Hawes

Although organelle movement in higher plants is predominantly actin-based, potential roles for the 17 predicted Arabidopsis myosins in motility are only just emerging. It is shown here that two Arabidopsis myosins from class XI, XIE, and XIK, are involved in Golgi, peroxisome, and mitochondrial movement. Expression of dominant negative forms of the myosin lacking the actin binding domain at the amino terminus perturb organelle motility, but do not completely inhibit movement. Latrunculin B, an actin destabilizing drug, inhibits organelle movement to a greater extent compared to the effects of AtXIE-T/XIK-T expression. Amino terminal YFP fusions to XIE-T and XIK-T are dispersed throughout the cytosol and do not completely decorate the organelles whose motility they affect. XIE-T and XIK-T do not affect the global actin architecture, but their movement and location is actin-dependent. The potential role of these truncated myosins as genetically encoded inhibitors of organelle movement is discussed.


The Plant Cell | 2010

Five Arabidopsis Reticulon Isoforms Share Endoplasmic Reticulum Location, Topology, and Membrane-Shaping Properties

Imogen Sparkes; Nicholas Tolley; Isabel Aller; Julia Svozil; Anne Osterrieder; Stanley W. Botchway; Christopher Mueller; Lorenzo Frigerio; Chris Hawes

This article describes the localization and organization of several members of a family of proteins known as the reticulons that reside in the membrane of the endoplasmic reticulum (ER), which is responsible for synthesizing proteins for export out of the cell. The reticulons reside in the ER membrane, interact with each other, and induce curvature to make these ER compartments tubular in structure. The cortical endoplasmic reticulum (ER) in tobacco (Nicotiana tabacum) epidermal cells is a network of tubules and cisternae undergoing dramatic rearrangements. Reticulons are integral membrane proteins involved in shaping ER tubules. Here, we characterized the localization, topology, effect, and interactions of five Arabidopsis thaliana reticulons (RTNs), isoforms 1-4 and 13, in the cortical ER. Our results indicate that RTNLB13 and RTNLB1-4 colocate to and constrict the tubular ER membrane. All five RTNs preferentially accumulate on ER tubules and are excluded from ER cisternae. All isoforms share the same transmembrane topology, with N and C termini facing the cytosol and four transmembrane domains. We show by Förster resonance energy transfer and fluorescence lifetime imaging microscopy that several RTNs have the capacity to interact with themselves and each other, and we suggest that oligomerization is responsible for their residence in the ER membrane. We also show that a complete reticulon homology domain is required for both RTN residence in high-curvature ER membranes and ER tubule constriction, yet it is not necessary for homotypic interactions.


Traffic | 2009

Grab a Golgi: Laser Trapping of Golgi Bodies Reveals in vivo Interactions with the Endoplasmic Reticulum

Imogen Sparkes; Tijs Ketelaar; Norbert C.A. de Ruijter; Chris Hawes

In many vacuolate plant cells, individual Golgi bodies appear to be attached to tubules of the pleiomorphic cortical endoplasmic reticulum (ER) network. Such observations culminated in the controversial mobile secretory unit hypothesis to explain transport of cargo from the ER to Golgi via Golgi attached export sites. This proposes that individual Golgi bodies and an attached‐ER exit machinery move over or with the surface of the ER whilst collecting cargo for secretion. By the application of infrared laser optical traps to individual Golgi bodies within living leaf cells, we show that individual Golgi bodies can be micromanipulated to reveal their association with the ER. Golgi bodies are physically attached to ER tubules and lateral displacement of individual Golgi bodies results in the rapid growth of the attached ER tubule. Remarkably, the ER network can be remodelled in living cells simply by movement of laser trapped Golgi dragging new ER tubules through the cytoplasm and new ER anchor sites can be established. Finally, we show that trapped Golgi ripped off the ER are ‘sticky’ and can be docked on to and attached to ER tubules, which will again show rapid growth whilst pulled by moving Golgi.


Plant Physiology | 2003

An Arabidopsis pex10 Null Mutant Is Embryo Lethal, Implicating Peroxisomes in an Essential Role during Plant Embryogenesis

Imogen Sparkes; Federica Brandizzi; Stephen P. Slocombe; Mahmoud El-Shami; Chris Hawes; Alison Baker

Peroxisomes participate in many important functions in plants, including seed reserve mobilization, photorespiration, defense against oxidative stress, and auxin and jasmonate signaling. In mammals, defects in peroxisome biogenesis result in multiple system abnormalities, severe developmental delay, and death, whereas in unicellular yeasts, peroxisomes are dispensable unless required for growth of specific substrates. PEX10 encodes an integral membrane protein required for peroxisome biogenesis in mammals and yeast. To investigate the importance of PEX10 in plants, we characterized a Ds insertion mutant in the PEX10 gene of Arabidopsis (AtPEX10). Heterozygous AtPEX10::dissociation element mutants show normal vegetative phenotypes under optimal growth conditions, but produce about 20% abnormal seeds. The embryos in the abnormal seeds are predominantly homozygous for the disruption allele. They show retarded development and some morphological abnormalities. No viable homozygous mutant plants were obtained. AtPEX10 fused to yellow fluorescent protein colocalized with green fluorescent protein-serine-lysine-leucine, a well-documented peroxisomal marker, suggesting that AtPEX10 encodes a peroxisomal protein that is essential for normal embryo development and viability.


Traffic | 2008

Overexpression of a plant reticulon remodels the lumen of the cortical endoplasmic reticulum but does not perturb protein transport.

Nicholas Tolley; Imogen Sparkes; Paul R. Hunter; Christian P. Craddock; James Nuttall; Lynne M. Roberts; Chris Hawes; Emanuela Pedrazzini; Lorenzo Frigerio

We have cloned a member of the reticulon (RTN) family of Arabidopsis thaliana (RTNLB13). When fused to yellow fluorescent protein (YFP) and expressed in tobacco leaf epidermal cells, RTNLB13 is localized in the endoplasmic reticulum (ER). Coexpression of a soluble ER luminal marker reveals that YFP‐tagged, myc‐tagged or untagged RTNLB13 induces severe morphological changes to the lumen of the ER. We show, using fluorescence recovery after photobleaching (FRAP) analysis, that RTNLB13 overexpression greatly reduces diffusion of soluble proteins within the ER lumen, possibly by introducing constrictions into the membrane. In spite of this severe phenotype, Golgi shape, number and dynamics appear unperturbed and secretion of a reporter protein remains unaffected.


Biochemical Journal | 2009

The plant endoplasmic reticulum: a cell-wide web

Imogen Sparkes; Lorenzo Frigerio; Nicholas Tolley; Chris Hawes

The ER (endoplasmic reticulum) in higher plants forms a pleomorphic web of membrane tubules and small cisternae that pervade the cytoplasm, but in particular form a polygonal network at the cortex of the cell which may be anchored to the plasma membrane. The network is associated with the actin cytoskeleton and demonstrates extensive mobility, which is most likely to be dependent on myosin motors. The ER is characterized by a number of domains which may be associated with specific functions such as protein storage, or with direct interaction with other organelles such as the Golgi apparatus, peroxisomes and plastids. In the present review we discuss the nature of the network, the role of shape-forming molecules such as the recently described reticulon family of proteins and the function of some of the major domains within the ER network.


Current Biology | 2014

The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum

Pengwei Wang; Timothy J. Hawkins; Christine Richardson; Ian Cummins; Michael J. Deeks; Imogen Sparkes; Chris Hawes; Patrick J. Hussey

The cortical endoplasmic reticulum (ER) network in plants is a highly dynamic structure, and it contacts the plasma membrane (PM) at ER-PM anchor/contact sites. These sites are known to be essential for communication between the ER and PM for lipid transport, calcium influx, and ER morphology in mammalian and fungal cells. The nature of these contact sites is unknown in plants, and here, we have identified a complex that forms this bridge. This complex includes (1) NET3C, which belongs to a plant-specific superfamily (NET) of actin-binding proteins, (2) VAP27, a plant homolog of the yeast Scs2 ER-PM contact site protein, and (3) the actin and microtubule networks. We demonstrate that NET3C and VAP27 localize to puncta at the PM and that NET3C and VAP27 form homodimers/oligomers and together form complexes with actin and microtubules. We show that F-actin modulates the turnover of NET3C at these puncta and microtubules regulate the exchange of VAP27 at the same sites. Based on these data, we propose a model for the structure of the plant ER-PM contact sites.

Collaboration


Dive into the Imogen Sparkes's collaboration.

Top Co-Authors

Avatar

Chris Hawes

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanley W. Botchway

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Luisa M. Sandalio

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María C. Romero-Puertas

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge