Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Imre Boros is active.

Publication


Featured researches published by Imre Boros.


Biochemical and Biophysical Research Communications | 2003

Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1 ☆ ☆☆

Judit Hargitai; Hannah M. Lewis; Imre Boros; Tímea Rácz; András Fiser; István Kurucz; Ivor J. Benjamin; László Vígh; Zoltán Pénzes; Péter Csermely; David S. Latchman

The novel hydroxylamine derivative, bimoclomol, has been shown previously to act as a co-inducer of several heat shock proteins (Hsp-s), enhancing the amount of these proteins produced following a heat shock compared to heat shock alone. Here we show that the co-inducing effect of bimoclomol on Hsp expression is mediated via the prolonged activation of the heat shock transcription factor (HSF-1). Bimoclomol effects are abolished in cells from mice lacking HSF-1. Moreover, bimoclomol binds to HSF-1 and induces a prolonged binding of HSF-1 to the respective DNA elements. Since HSF-1 does not bind to DNA in the absence of stress, the bimoclomol-induced extension of HSF-1/DNA interaction may contribute to the chaperone co-induction of bimoclomol observed previously. These findings indicate that bimoclomol may be of value in targeting HSF-1 so as to induce up-regulation of protective Hsp-s in a non-stressful manner and for therapeutic benefit.


Molecular and Cellular Biology | 2003

Two Different Drosophila ADA2 Homologues Are Present in Distinct GCN5 Histone Acetyltransferase-Containing Complexes

Selen C. Muratoglu; S. G. Georgieva; Gabor Papai; Elisabeth Scheer; Izzet Enünlü; Orbán Komonyi; Imre Cserpán; Lubov Lebedeva; E. N. Nabirochkina; Andor Udvardy; Laszlo Tora; Imre Boros

ABSTRACT We have isolated a novel Drosophila (d) gene coding for two distinct proteins via alternative splicing: a homologue of the yeast adaptor protein ADA2, dADA2a, and a subunit of RNA polymerase II (Pol II), dRPB4. Moreover, we have identified another gene in the Drosophila genome encoding a second ADA2 homologue (dADA2b). The two dADA2 homologues, as well as many putative ADA2 homologues from different species, all contain, in addition to the ZZ and SANT domains, several evolutionarily conserved domains. The dada2a/rpb4 and dada2b genes are differentially expressed at various stages of Drosophila development. Both dADA2a and dADA2b interacted with the GCN5 histone acetyltransferase (HAT) in a yeast two-hybrid assay, and dADA2b, but not dADA2a, also interacted with Drosophila ADA3. Both dADA2s further potentiate transcriptional activation in insect and mammalian cells. Antibodies raised either against dADA2a or dADA2b both immunoprecipitated GCN5 as well as several Drosophila TATA binding protein-associated factors (TAFs). Moreover, following glycerol gradient sedimentation or chromatographic purification combined with gel filtration of Drosophila nuclear extracts, dADA2a and dGCN5 were detected in fractions with an apparent molecular mass of about 0.8 MDa whereas dADA2b was found in fractions corresponding to masses of at least 2 MDa, together with GCN5 and several Drosophila TAFs. Furthermore, in vivo the two dADA2 proteins showed different localizations on polytene X chromosomes. These results, taken together, suggest that the two Drosophila ADA2 homologues are present in distinct GCN5-containing HAT complexes.


Molecular and Cellular Biology | 2005

The homologous Drosophila transcriptional adaptors ADA2a and ADA2b are both required for normal development but have different functions

Tibor Pankotai; Orbán Komonyi; Laszlo Bodai; Zsuzsanna Újfaludi; Selen Muratoglu; Anita Ciurciu; Laszlo Tora; János Szabad; Imre Boros

ABSTRACT In Drosophila and several other metazoan organisms, there are two genes that encode related but distinct homologs of ADA2-type transcriptional adaptors. Here we describe mutations of the two Ada2 genes of Drosophila melanogaster. By using mutant Drosophila lines, which allow the functional study of individual ADA2s, we demonstrate that both Drosophila Ada2 genes are essential. Ada2a and Ada2b null homozygotes are late-larva and late-pupa lethal, respectively. Double mutants have a phenotype identical to that of the Ada2a mutant. The overproduction of ADA2a protein from transgenes cannot rescue the defects resulting from the loss of Ada2b, nor does complementation work vice versa, indicating that the two Ada2 genes of Drosophila have different functions. An analysis of germ line mosaics generated by pole-cell transplantation revealed that the Ada2a function (similar to that reported for Ada2b) is required in the female germ line. A loss of the function of either of the Ada2 genes interferes with cell proliferation. Interestingly, the Ada2b null mutation reduces histone H3 K14 and H3 K9 acetylation and changes TAF10 localization, while the Ada2a null mutation does not. Moreover, the two ADA2s are differently required for the expression of the rosy gene, involved in eye pigment production, and for Dmp53-mediated apoptosis. The data presented here demonstrate that the two genes encoding homologous transcriptional adaptor ADA2 proteins in Drosophila are both essential but are functionally distinct.


Molecular and Cellular Biology | 2003

Human T-Lymphotropic Virus Type 1 Oncoprotein Tax Promotes Unscheduled Degradation of Pds1p/Securin and Clb2p/Cyclin B1 and Causes Chromosomal Instability

Baoying Liu; Min-Hui Liang; Yu-Liang Kuo; Wei Liao; Imre Boros; Tami Kleinberger; Jan Blancato; Chou-Zen Giam

ABSTRACT Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia. The HTLV-1 transactivator, Tax, is implicated as the viral oncoprotein. Naïve cells expressing Tax for the first time develop severe cell cycle abnormalities that include increased DNA synthesis, mitotic arrest, appearance of convoluted nuclei with decondensed DNA, and formation of multinucleated cells. Here we report that Tax causes a drastic reduction in Pds1p/securin and Clb2p/cyclin B levels in yeast, rodent, and human cells and a loss of cell viability. With a temperature-sensitive mutant of the CDC23 subunit of the anaphase-promoting complex (APC), cdc23ts; a temperature-sensitive mutant of cdc20; and a cdh1-null mutant, we show that the diminution of Pds1p and Clb2p brought on by Tax is mediated via the Cdc20p-associated anaphase-promoting complex, APCCdc20p. This loss of Pds1p/securin and Clb2p/cyclin B1 occurred before cellular entry into mitosis, caused a G2/M cell cycle block, and was accompanied by severe chromosome aneuploidy in both Saccharomyces cerevisiae cells and human diploid fibroblasts. Our results support the notion that Tax aberrantly targets and activates APCCdc20p, leading to unscheduled degradation of Pds1p/securin and Clb2p/cyclin B1, a delay or failure in mitotic entry and progression, and faulty chromosome transmission. The chromosomal instability resulting from a Tax-induced deficiency in securin and cyclin B1 provides an explanation for the highly aneuploid nature of adult T-cell leukemia cells.


Free Radical Biology and Medicine | 2003

NF-κB activation is detrimental in arginine-induced acute pancreatitis

Zoltán Rakonczay; K. Jármay; József Kaszaki; Yvette Mándi; Erno Duda; Péter Hegyi; Imre Boros; J. Lonovics; Tamás Takács

The transcription factor nuclear factor kappaB (NF-kappaB) has been shown to have a critical role in the pathogenesis of sodium taurocholate- and cerulein-induced acute pancreatitis by regulating the expression of many proinflammatory genes in the pancreas. Heat shock proteins (HSPs), on the other hand, protect the pancreas against cellular damage. The aims of the present study were: (i) to investigate pancreatic NF-kappaB activation, proinflammatory cytokine synthesis, and cytoprotective HSP induction during L-arginine- (Arg-) induced acute pancreatitis in rats, and (ii) to establish whether pretreatment with pyrrolidine dithiocarbamate (PDTC) or methylprednisolone (MP) can block the activation of pancreatic NF-kappaB and determine their effects on the severity of Arg-induced acute pancreatitis. The dose-response (3 or 4 g/kg) and time-effect (0.5-96 h) curves relating to the action of Arg on pancreatic NF-kappaB activation and IL-1beta, TNF-alpha, HSP60, and HSP72 synthesis were evaluated. Various doses of PDTC or MP were administered 1 h before the induction of pancreatitis. We demonstrated that Arg specifically and dose-dependently induces pancreatitis, activates NF-kappaB (only the 3 g/kg dose) and proinflammatory cytokine synthesis, and increases the expressions of HSP60 and HSP72 in the pancreas of rats. The lower dose of Arg induced a less severe pancreatitis, but larger increases in the levels of HSPs. The present work supports and extends earlier observations that NF-kappaB activation is a common mechanism in acute pancreatitis, although it is dose dependent and occurs at a later stage in Arg-induced pancreatitis as compared with other models. PDTC and MP pretreatment dose-dependently blocked NF-kappaB activation and proinflammatory cytokine expression and ameliorated many of the examined laboratory (the pancreatic weight/body weight ratio, the pancreatic myeloperoxidase activity, the pancreatic contents of protein, amylase and trypsinogen, the degrees of lipid peroxidation and protein oxidation, and the nonprotein sulfhydryl group content) and morphological parameters of the disease. These findings suggest that pretreatment with PDTC or MP has an anti-inflammatory effect during Arg-induced pancreatitis, which is at least partly mediated by the inhibition of NF-kappaB activation and proinflammatory cytokine synthesis. The increased levels of HSPs most probably act to limit the severity of the disease.


Molecular and Cellular Biology | 2006

The Drosophila Histone Acetyltransferase Gcn5 and Transcriptional Adaptor Ada2a Are Involved in Nucleosomal Histone H4 Acetylation

Anita Ciurciu; Orbán Komonyi; Tibor Pankotai; Imre Boros

ABSTRACT The histone acetyltransferase (HAT) Gcn5 plays a role in chromatin structure and gene expression regulation as a catalytic component of multiprotein complexes, some of which also contain Ada2-type transcriptional coactivators. Data obtained mostly from studies on yeast (Saccharomyces cerevisiae) suggest that Ada2 potentiates Gcn5 activity and substrate recognition. dAda2b, one of two related Ada2 proteins of Drosophila melanogaster, was recently found to play a role in complexes acetylating histone 3 (H3). Evidence of an in vivo functional link between the related coactivator dAda2a and dGcn5, however, is lacking. Here we present data on the genetic interaction of dGcn5 and dAda2a. The loss of either dGcn5 or dAda2a function results in similar chromosome structural and developmental defects. In dAda2a mutants, the nucleosomal H4 acetylation at lysines 12 and 5 is significantly reduced, while the acetylation established by dAda2b-containing Gcn5 complexes at H3 lysines 9 and 14 is unaffected. The data presented here, together with our earlier data on the function of dAda2b, provide evidence that related Ada2 proteins of Drosophila, together with Gcn5 HAT, are involved in the acetylation of specific lysine residues in the N-terminal tails of nucleosomal H3 and H4. Our data suggest dAda2a involvement in both uniformly distributed H4 acetylation and gene-specific transcription regulation.


Journal of Cellular Physiology | 2003

Heat shock proteins and the pancreas

Zoltán Rakonczay; Tamás Takács; Imre Boros; J. Lonovics

Heat shock proteins (HSPs) are cytoprotective molecules that help to maintain the metabolic and structural integrity of cells. In this review, we briefly discuss the regulation and function of HSPs. The review focuses on the current knowledge of pancreatic HSP induction, the HSP level changes during acute pancreatitis, the potential effects of the pre‐ and co‐induction of HSPs in experimental acute pancreatitis, and the mechanisms by which HSPs might mediate cellular protection.


Journal of Biological Chemistry | 2005

DTL, the Drosophila Homolog of PIMT/Tgs1 Nuclear Receptor Coactivator-interacting Protein/RNA Methyltransferase, Has an Essential Role in Development

Orbán Komonyi; Gabor Papai; Izzet Enünlü; Selen C. Muratoglu; Tibor Pankotai; Darija Kopitova; Péter Maróy; Andor Udvardy; Imre Boros

We describe a novel Drosophila gene, dtl (Drosophila Tat-like), which encodes a 60-kDa protein with RNA binding activity and a methyltransferase (MTase) domain. Dtl has an essential role in Drosophila development. The homologs of DTL recently described include PIMT (peroxisome proliferator-activated receptor-interacting protein with a methyltransferase domain), an RNA-binding protein that interacts with and enhances the nuclear receptor coactivator function, and TGS1, the methyltransferase involved in the formation of the 2,2,7-trimethylguanosine (m3G) cap of non-coding small RNAs. DTL is expressed throughout all of the developmental stages of Drosophila. The dtl mRNA has two ORFs (uORF and dORF). The product of dORF is the 60-kDa PIMT/TGS1 homolog protein that is translated from an internal AUG located 538 bp downstream from the 5′ end of the message. This product of dtl is responsible for the formation of the m3G cap of small RNAs of Drosophila. Trimethylguanosine synthase activity is essential in Drosophila. The deletion in the dORF or point mutation in the putative MTase active site results in a reduced pool of m3G cap-containing RNAs and lethality in the early pupa stage. The 5′ region of the dtl message also has the coding capacity (uORF) for a 178 amino acid protein. For complete rescue of the lethal phenotype of dtl mutants, the presence of the entire dtl transcription unit is required. Transgenes that carry mutations within the uORF restore the MTase activity but result in only partial rescue of the lethal phenotype. Interestingly, two transgenes bearing a mutation in uORF or dORF in trans can result in complete rescue.


Free Radical Biology and Medicine | 2002

Nontoxic heat shock protein coinducer BRX-220 protects against acute pancreatitis in rats

Zoltán Rakonczay; Béla Iványi; Ilona S. Varga; Imre Boros; Andrea Jednakovits; Ilona Németh; J. Lonovics; Tamás Takács

BACKGROUND Nontoxic heat shock protein (HSP) inducer compounds open up promising therapeutic possibilities by activating one of the natural and highly conserved defense mechanisms of the organism. AIMS In the present experiments, we examined the effects of a HSP coinducer drug-candidate, BRX-220, on the cholecystokinin-octapeptide (CCK)-induced acute pancreatitis in rats. METHODS Male Wistar rats weighing 240 to 270 g were divided into two groups. In group B, 20 mg/kg BRX-220 was administered orally, followed by 75 microg/kg CCK subcutaneously three times, after 1, 3, and 5 h. This whole procedure was repeated for 5 d. The animals in group slashed circleB received physiological saline orally instead of BRX-220, but otherwise the protocol was the same as in group B. The rats were exsanguinated through the abdominal aorta 12 h after the last administration of CCK. We determined the serum amylase activity, the plasma trypsinogen activation peptide concentration, the pancreatic weight/body weight ratio, the DNA and total protein contents of the pancreas, the levels of pancreatic HSP60 and HSP72, the activities of pancreatic amylase, lipase, trypsinogen, and free radical scavenger enzymes (superoxide dismutase, catalase, and glutathione peroxidase), the degree of lipid peroxidation, protein oxidation, and the reduced glutathione level. Histopathological investigation of the pancreas was also performed in all cases. RESULTS Repeated CCK treatment resulted in the typical laboratory and morphological changes of experimentally induced pancreatitis. The pancreatic levels of HSP60 and HSP72 were significantly increased in the animals treated with BRX-220. In group B, the pancreatic total protein content and the amylase and trypsinogen activities were significantly higher vs. group slashed circleB. The plasma trypsinogen activation peptide concentration, and the pancreatic lipid peroxidation, protein oxidation, and the activity of Cu/Zn-superoxide dismutase were significantly decreased in group B vs. group slashed circleB, whereas the glutathione peroxidase activity was increased. The morphological damage in group B was significantly lower than that in group slashed circleB. CONCLUSION The HSP coinducer BRX-220, administered for 5 d, has a protective effect against CCK-induced acute pancreatitis.


International Journal of Hyperthermia | 2001

Water immersion pretreatment decreases pro-inflammatory cytokine production in cholecystokinin-octapeptide-induced acute pancreatitis in rats: possible role of HSP72.

Zoltán Rakonczay; T. Taká; Yvette Mándi; Béla Iványi; Ilona S. Varga; G. Pápai; Imre Boros; J. Lonovics

Heat shock proteins (HSPs) are cytoprotective proteins that are expressed constitutively and/or at elevated levels upon the exposure of cells to stress. The aim of this study was to investigate the potential effects of HSP preinduction by cold- (CWI) or hot-water immersion (HWI) on pro-inflammatory cytokine production (IL-1, IL-6, TNF-alpha) in cholecystokinin-octapeptide(CCK)-induced acute pancreatitis. Rats were injected with 3 x 75 microg/kg CCK subcutaneously at intervals of 2 h at the peak level of HSP synthesis, as determined by Western blot analysis. The animals were killed by exsanguination through the abdominal aorta 2 h after the last CCK injection. The serum IL-1, IL-6, TNF-alpha, and amylase levels, the pancreatic weight/body weight ratio, and the pancreatic contents of DNA, protein, amylase, lipase and trypsinogen were measured; biopsy for histology was taken. HWI significantly elevated the HSP72 expression, while CWI significantly increased the HSP60 expression. HWI pretreatment decreased all of the measured serum cytokine levels in this acute pancreatitis model. CWI and HWI pretreatment ameliorated most of the examined laboratory and morphological parameters of CCK-induced pancreatitis. The findings suggest the possible roles of HSP60 and HSP72 in the protection against CCK-induced pancreatitis. HSP72 might also participate in the reduction of pro-inflammatory cytokine synthesis.Heat shock proteins (HSPs) are cytoprotective proteins that are expressed constitutively and/or at elevated levels upon the exposure of cells to stress. The aim of this study was to investigate the potential effects of HSP preinduction by cold- (CWI) or hot-water immersion (HWI) on pro-inflammatory cytokine production (IL-1, IL-6, TNF- f ) in cholecystokininoctapeptide(CCK)-induced acute pancreatitis. Rats were injected with 3 75µg/kg CCK subcutaneously at intervals of 2h at the peak level of HSP synthesis, as determined by Western blot analysis. The animals were killed by exsanguination through the abdominal aorta 2h after the last CCK injection. The serum IL-1, IL-6, TNF- f , and amylase levels, the pancreatic weight/body weight ratio, and the pancreatic contents of DNA, protein, amylase, lipase and trypsinogen were measured; biopsy for histology was taken. HWI significantly elevated the HSP72 expression, while CWI significantly increased the HSP60 expression. HWI pretreatment decreased all of the measured serum cytokine levels in this acute pancreatitis model. CWI and HWI pretreatment ameliorated most of the examined laboratory and morphological parameters of CCK-induced pancreatitis. The findings suggest the possible roles of HSP60 and HSP72 in the protection against CCK-induced pancreatitis. HSP72 might also participate in the reduction of pro-inflammatory cytokine synthesis.

Collaboration


Dive into the Imre Boros's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pál Venetianer

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tibor Pankotai

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge