Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zsuzsanna Újfaludi is active.

Publication


Featured researches published by Zsuzsanna Újfaludi.


Molecular and Cellular Biology | 2005

The homologous Drosophila transcriptional adaptors ADA2a and ADA2b are both required for normal development but have different functions

Tibor Pankotai; Orbán Komonyi; Laszlo Bodai; Zsuzsanna Újfaludi; Selen Muratoglu; Anita Ciurciu; Laszlo Tora; János Szabad; Imre Boros

ABSTRACT In Drosophila and several other metazoan organisms, there are two genes that encode related but distinct homologs of ADA2-type transcriptional adaptors. Here we describe mutations of the two Ada2 genes of Drosophila melanogaster. By using mutant Drosophila lines, which allow the functional study of individual ADA2s, we demonstrate that both Drosophila Ada2 genes are essential. Ada2a and Ada2b null homozygotes are late-larva and late-pupa lethal, respectively. Double mutants have a phenotype identical to that of the Ada2a mutant. The overproduction of ADA2a protein from transgenes cannot rescue the defects resulting from the loss of Ada2b, nor does complementation work vice versa, indicating that the two Ada2 genes of Drosophila have different functions. An analysis of germ line mosaics generated by pole-cell transplantation revealed that the Ada2a function (similar to that reported for Ada2b) is required in the female germ line. A loss of the function of either of the Ada2 genes interferes with cell proliferation. Interestingly, the Ada2b null mutation reduces histone H3 K14 and H3 K9 acetylation and changes TAF10 localization, while the Ada2a null mutation does not. Moreover, the two ADA2s are differently required for the expression of the rosy gene, involved in eye pigment production, and for Dmp53-mediated apoptosis. The data presented here demonstrate that the two genes encoding homologous transcriptional adaptor ADA2 proteins in Drosophila are both essential but are functionally distinct.


Journal of Biological Chemistry | 2005

Drosophila Lysyl Oxidases Dmloxl-1 and Dmloxl-2 Are Differentially Expressed and the Active DmLOXL-1 Influences Gene Expression and Development

Janos Molnar; Zsuzsanna Újfaludi; Sheri F. T. Fong; John A. Bollinger; Girma Waro; Ben Fogelgren; David M. Dooley; Matyas Mink; Katalin Csiszar

Mammalian lysyl oxidase (LOX) is essential for the catalysis of lysyl-derived cross-links in fibrillar collagens and elastin in the extracellular matrix and has also been implicated in cell motility, differentiation, and tumor cell invasion. The active LOX has been shown to translocate to the nuclei of smooth muscle cells and regulate chromatin structure and transcription. It is difficult to interpret the role of the LOX protein as it is co-expressed with other members of the LOX amine oxidase family in most mammalian cells. To investigate the function of the LOX proteins, we have characterized the Drosophila lysyl oxidases Dmloxl-1 and Dmloxl-2. We present the gene, domain structure, and expression pattern of Dmloxl-1 and Dmloxl-2 during development. In early development, only Dmloxl-1 was expressed, which allowed functional studies. We have expressed Dmloxl-1 in S2 cells and determined that it is a catalytically active enzyme, inhibited by β-amino-proprionitrile (BAPN), a specific LOX inhibitor. We localized DmLOXL-1 in the nuclei in embryos and in adult salivary gland cells in the nuclei, cytoplasm, and cell surface, using immunostaining and a DmLOXL-1 antibody. To address the biological function of Dmloxl-1, we raised larvae under BAPN inhibitory conditions and over-expressed Dmloxl-1 in transgenic Drosophila. DmLOXL-1 inhibition resulted in developmental delay and a shift in sex ratio; over-expression in the wm4 variegating strain increased drosopterin production, demonstrating euchromatinization. Our previous data on the transcriptional down-regulation of seven ribosomal genes and the glue gene under inhibitory conditions and the current results collectively support a nuclear role for Dmloxl-1 in euchromatinization and gene regulation.


Nucleic Acids Research | 2009

The loss of histone H3 lysine 9 acetylation due to dSAGA-specific dAda2b mutation influences the expression of only a small subset of genes

Nóra Zsindely; Tibor Pankotai; Zsuzsanna Újfaludi; Dániel Lakatos; Orbán Komonyi; Laszlo Bodai; Laszlo Tora; Imre Boros

In Drosophila, the dADA2b-containing dSAGA complex is involved in histone H3 lysine 9 and 14 acetylation. Curiously, although the lysine 9- and 14-acetylated histone H3 levels are drastically reduced in dAda2b mutants, these animals survive until a late developmental stage. To study the molecular consequences of the loss of histone H3 lysine 9 and 14 acetylation, we compared the total messenger ribonucleic acid (mRNA) profiles of wild type and dAda2b mutant animals at two developmental stages. Global gene expression profiling indicates that the loss of dSAGA-specific H3 lysine 9 and 14 acetylation results in the expression change (up- or down-regulation) of a rather small subset of genes and does not cause a general transcription de-regulation. Among the genes up-regulated in dAda2b mutants, particularly high numbers are those which play roles in antimicrobial defense mechanisms. Results of chromatin immunoprecipitation experiments indicate that in dAda2b mutants, the lysine 9-acetylated histone H3 levels are decreased both at dSAGA up- and down-regulated genes. In contrast to that, in the promoters of dSAGA-independent ribosomal protein genes a high level of histone H3K9ac is maintained in dAda2b mutants. Our data suggest that by acetylating H3 at lysine 9, dSAGA modifies Pol II accessibility to specific promoters differently.


BMC Molecular Biology | 2008

TATA binding protein associated factor 3 (TAF3) interacts with p53 and inhibits its function

Orsolya Bereczki; Zsuzsanna Újfaludi; Norbert Pardi; Zita Nagy; Laszlo Tora; Imre Boros; Eva Balint

BackgroundThe tumour suppressor protein p53 is a sequence specific DNA-binding transcription regulator, which exerts its versatile roles in genome protection and apoptosis by affecting the expression of a large number of genes. In an attempt to obtain a better understanding of the mechanisms by which p53 transcription function is regulated, we studied p53 interactions.ResultsWe identified BIP2 (Bric-à-brac interacting protein 2), the fly homolog of TAF3, a histone fold and a plant homeodomain containing subunit of TFIID, as an interacting partner of Drosophila melanogaster p53 (Dmp53). We detected physical interaction between the C terminus of Dmp53 and the central region of TAF3 both in yeast two hybrid assays and in vitro. Interestingly, DmTAF3 can also interact with human p53, and mammalian TAF3 can bind to both Dmp53 and human p53. This evolutionarily conserved interaction is functionally significant, since elevated TAF3 expression severely and selectively inhibits transcription activation by p53 in human cell lines, and it decreases the level of the p53 protein as well.ConclusionWe identified TAF3 as an evolutionarily conserved negative regulator of p53 transcription activation function.


Journal of Biological Chemistry | 2007

Daxx-like protein of Drosophila interacts with Dmp53 and affects longevity and Ark mRNA level.

Laszlo Bodai; Norbert Pardi; Zsuzsanna Újfaludi; Orsolya Bereczki; Orbán Komonyi; Éva Bálint; Imre Boros

Daxx-like protein (DLP), the Drosophila homolog of Daxx, binds Drosophila melanogaster p53 (Dmp53) through its C-terminal region. We generated DLP mutants and found that although DLP expression is developmentally regulated, it is not essential for the execution of the developmental program. The effects DLP mutations show in the loss of heterozygosity assay and on phenotypes resulting from Dmp53 overexpression indicate a genetic interaction between DLP and Dmp53. In contrast to Dmp53 mutants, however, loss of DLP does not result in radiosensitivity indicating that it does not play an essential role in the activation of Dmp53-dependent response after ionizing radiation, and DLP is also not required for the irradiation-induced activation of reaper. In contrast, DLP is involved in the transcriptional regulation of Ark, because Ark mRNA level is decreased in DLP mutants and increased upon ectopic overexpression of DLP. Interestingly, DLP mutants have reduced longevity and reduced female fertility. Altogether, our data suggest complex functions for DLP, which include an anti-apoptotic effect exerted through repression of some Dmp53 functions, and activation of some proapoptotic genes.


PLOS Genetics | 2014

UVB induces a genome-wide acting negative regulatory mechanism that operates at the level of transcription initiation in human cells.

Àkos Gyenis; David Umlauf; Zsuzsanna Újfaludi; Imre Boros; Tao Ye; Laszlo Tora

Faithful transcription of DNA is constantly threatened by different endogenous and environmental genotoxic effects. Transcription coupled repair (TCR) has been described to stop transcription and quickly remove DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. This repair mechanism has been well characterized in the past using individual target genes. Moreover, numerous efforts investigated the fate of blocked RNA polymerase II (Pol II) during DNA repair mechanisms and suggested that stopped Pol II complexes can either backtrack, be removed and degraded or bypass the lesions to allow TCR. We investigated the effect of a non-lethal dose of UVB on global DNA-bound Pol II distribution in human cells. We found that the used UVB dose did not induce Pol II degradation however surprisingly at about 93% of the promoters of all expressed genes Pol II occupancy was seriously reduced 2–4 hours following UVB irradiation. The presence of Pol II at these cleared promoters was restored 5–6 hours after irradiation, indicating that the negative regulation is very dynamic. We also identified a small set of genes (including several p53 regulated genes), where the UVB-induced Pol II clearing did not operate. Interestingly, at promoters, where Pol II promoter clearance occurs, TFIIH, but not TBP, follows the behavior of Pol II, suggesting that at these genes upon UVB treatment TFIIH is sequestered for DNA repair by the TCR machinery. In agreement, in cells where the TCR factor, the Cockayne Syndrome B protein, was depleted UVB did not induce Pol II and TFIIH clearance at promoters. Thus, our study reveals a UVB induced negative regulatory mechanism that targets Pol II transcription initiation on the large majority of transcribed gene promoters, and a small subset of genes, where Pol II escapes this negative regulation.


The Journal of Steroid Biochemistry and Molecular Biology | 2015

Synthesis of trans-16-triazolyl-13α-methyl-17-estradiol diastereomers and the effects of structural modifications on their in vitro antiproliferative activities.

Erzsébet Mernyák; Ida Kovács; Renáta Minorics; Péter Sere; Dóra Czégány; Izabella Sinka; János Wölfling; Gyula Schneider; Zsuzsanna Újfaludi; Imre Boros; Imre Ocsovszki; Mónika Varga; István Zupkó

Novel 16-triazoles in the 13α-estrone series were synthesized via Cu(I)-catalyzed azide-alkyne cycloaddition of the two diastereomeric (on C-16 and on C-17) 16-azido-13α-estra-1,3,5(10)-trien-17-ol 3-benzyl ethers with substituted phenylacetylenes. The new heterocyclic derivatives were evaluated in vitro by means of MTT assays for antiproliferative activity against a panel of human adherent cancer cell lines (HeLa, MCF-7, A431, A2780, T47D, MDA-MB-231 and MDA-MB-361). The inversion of the configurations at C-16 and C-17 selectively affected the growth-inhibitory properties of the tested compounds. The 16β,17α isomers generally proved to be potent on all cell lines, with IC50 values comparable to those of the reference agent cisplatin. Change of the substitution pattern of the phenyl group of the acetylene led to great differences in antiproliferative properties. Exclusively the p-phenyl-substituted triazoles exerted high cytostatic effects. One of the most potent compounds activated caspase-3 and caspase-9 without influencing caspase-8, confirming the induction of apoptosis via the intrinsic pathway.


Acta Biologica Hungarica | 2007

Different sets of genes are activated by P53 upon UV or ionizing radiation in Drosophila melanogaster

Zsuzsanna Újfaludi; Imre Boros; Éva Bálint

The p53 tumour suppressor plays central role in the maintenance of genome integrity. P53 deficient fruit flies are highly sensitive to ionizing radiation (IR) and show genome instability suggesting that the Drosophila melanogaster p53 (Dmp53) is necessary for the proper damage response upon IR. We found that Dmp53 null fruit flies are highly sensitive to ultraviolet radiation (UV) as well. We analyzed the expression levels of apoptotic genes in wild type and Dmp53 null mutant animals after UV or IR using quantitative real-time RT-PCR. Ark (Apaf-1 related killer) was induced in a Dmp53-dependent way upon UV treatment but not by IR, hid (head involution defective/wrinkled) was induced upon both types of DNA damage, while reaper was induced only upon IR but not UV treatment. Using microarray analysis we identified several further genes that are activated upon UV irradiation in the presence of wild type Dmp53 only. Some but not all of these genes show Dmp53-dependent activation upon IR treatment as well. These results suggest that Dmp53 activates distinct cellular pathways through regulation of different target genes after different types of DNA damage.


Scientific Reports | 2017

Human p53 interacts with the elongating RNAPII complex and is required for the release of actinomycin D induced transcription blockage

Barbara Borsos; Ildikó Huliák; Hajnalka Majoros; Zsuzsanna Újfaludi; Ákos A. Gyenis; Peter Pukler; Imre Boros; Tibor Pankotai

The p53 tumour suppressor regulates the transcription initiation of selected genes by binding to specific DNA sequences at their promoters. Here we report a novel role of p53 in transcription elongation in human cells. Our data demonstrate that upon transcription elongation blockage, p53 is associated with genes that have not been reported as its direct targets. p53 could be co-immunoprecipitated with active forms of DNA-directed RNA polymerase II subunit 1 (RPB1), highlighting its association with the elongating RNA polymerase II. During a normal transcription cycle, p53 and RPB1 are localised at distinct regions of selected non-canonical p53 target genes and this pattern of localisation was changed upon blockage of transcription elongation. Additionally, transcription elongation blockage induced the proteasomal degradation of RPB1. Our results reveal a novel role of p53 in human cells during transcription elongation blockage that may facilitate the removal of RNA polymerase II from DNA.


Molecular Genetics and Genomics | 2010

The dissociable RPB4 subunit of RNA Pol II has vital functions in Drosophila

Tibor Pankotai; Zsuzsanna Újfaludi; Edith Vámos; Katalin Suri; Imre Boros

RNA polymerase II (Pol II) is composed of a ten subunit core and a two subunit dissociable subcomplex comprising the fourth and seventh largest subunits, RPB4 and RPB7. The evolutionary highly conserved RPB4/7 heterodimer is positioned in the Pol II such that it can make contact with various factors involved in RNA biogenesis and is believed to play roles both during the process of transcription and post-transcription. A detailed analysis of RPB4/7 function in a multicellular eukaryote, however, is lacking partly because of the lack of a suitable genetic system. Here, we describe generation and initial analysis of Drosophila Rpb4 mutants. In the fly, RPB4 is a product of a bicistronic gene together with the ATAC histone acetyltransferase complex constituent ADA2a. DmAda2a and DmRpb4 are expressed during fly development at different levels. The structure of mature mRNA forms suggests that the production of DmADA2a and DmRPB4-specific mRNAs is ensured by alternative splicing. Genetic analysis indicates that both DmRPB4 and DmADA2a play essential roles, because their absence results in lethality in early and late larval stages, respectively. Upon stress of high temperature or nutritional starvation, the levels of RPB4 and ADA2a messages change differently. RPB4 colocalizes with Pol II to several sites on polytene chromosomes, however, at selected locus, the abundances of Pol II and RPB4 vary greatly. Our data suggest no tight functional link between DmADA2a and DmRPB4, and reveal differences in the abundances of Pol II core subunits and RPB4 localized at specific regions on polytene chromosomes, supporting the suggested role of RPB4 outside of transcription-engaged Pol II complexes.

Collaboration


Dive into the Zsuzsanna Újfaludi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tibor Pankotai

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laszlo Tora

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Tibor Pankotai

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

András Bors

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

András Váradi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Brózik

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge