Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orbán Komonyi is active.

Publication


Featured researches published by Orbán Komonyi.


Cell Death & Differentiation | 2007

Gene Expression Profiling Identifies FKBP39 as an Inhibitor of Autophagy in Larval Drosophila Fat Body

Gábor Juhász; László G. Puskás; Orbán Komonyi; Balázs Érdi; Péter Maróy; Thomas P. Neufeld; Miklós Sass

In Drosophila, the fat body undergoes a massive burst of autophagy at the end of larval development in preparation for the pupal transition. To identify genes involved in this process, we carried out a microarray analysis. We found that mRNA levels of the homologs of Atg8, the coat protein of early autophagic structures, and lysosomal hydrolases were upregulated, consistent with previous results. Genes encoding mitochondrial proteins and many chaperones were downregulated, including the inhibitor of eIF2alpha kinases and the peptidyl-prolyl cis–trans isomerase FK506-binding protein of 39 kDa (FKBP39). Genetic manipulation of FKBP39 expression had a significant effect on autophagy, potentially through modulation of the transcription factor Foxo. Accordingly, we found that Foxo mutants cannot properly undergo autophagy in response to starvation, and that overexpression of Foxo induces autophagy.


Molecular and Cellular Biology | 2003

Two Different Drosophila ADA2 Homologues Are Present in Distinct GCN5 Histone Acetyltransferase-Containing Complexes

Selen C. Muratoglu; S. G. Georgieva; Gabor Papai; Elisabeth Scheer; Izzet Enünlü; Orbán Komonyi; Imre Cserpán; Lubov Lebedeva; E. N. Nabirochkina; Andor Udvardy; Laszlo Tora; Imre Boros

ABSTRACT We have isolated a novel Drosophila (d) gene coding for two distinct proteins via alternative splicing: a homologue of the yeast adaptor protein ADA2, dADA2a, and a subunit of RNA polymerase II (Pol II), dRPB4. Moreover, we have identified another gene in the Drosophila genome encoding a second ADA2 homologue (dADA2b). The two dADA2 homologues, as well as many putative ADA2 homologues from different species, all contain, in addition to the ZZ and SANT domains, several evolutionarily conserved domains. The dada2a/rpb4 and dada2b genes are differentially expressed at various stages of Drosophila development. Both dADA2a and dADA2b interacted with the GCN5 histone acetyltransferase (HAT) in a yeast two-hybrid assay, and dADA2b, but not dADA2a, also interacted with Drosophila ADA3. Both dADA2s further potentiate transcriptional activation in insect and mammalian cells. Antibodies raised either against dADA2a or dADA2b both immunoprecipitated GCN5 as well as several Drosophila TATA binding protein-associated factors (TAFs). Moreover, following glycerol gradient sedimentation or chromatographic purification combined with gel filtration of Drosophila nuclear extracts, dADA2a and dGCN5 were detected in fractions with an apparent molecular mass of about 0.8 MDa whereas dADA2b was found in fractions corresponding to masses of at least 2 MDa, together with GCN5 and several Drosophila TAFs. Furthermore, in vivo the two dADA2 proteins showed different localizations on polytene X chromosomes. These results, taken together, suggest that the two Drosophila ADA2 homologues are present in distinct GCN5-containing HAT complexes.


Molecular and Cellular Biology | 2005

The homologous Drosophila transcriptional adaptors ADA2a and ADA2b are both required for normal development but have different functions

Tibor Pankotai; Orbán Komonyi; Laszlo Bodai; Zsuzsanna Újfaludi; Selen Muratoglu; Anita Ciurciu; Laszlo Tora; János Szabad; Imre Boros

ABSTRACT In Drosophila and several other metazoan organisms, there are two genes that encode related but distinct homologs of ADA2-type transcriptional adaptors. Here we describe mutations of the two Ada2 genes of Drosophila melanogaster. By using mutant Drosophila lines, which allow the functional study of individual ADA2s, we demonstrate that both Drosophila Ada2 genes are essential. Ada2a and Ada2b null homozygotes are late-larva and late-pupa lethal, respectively. Double mutants have a phenotype identical to that of the Ada2a mutant. The overproduction of ADA2a protein from transgenes cannot rescue the defects resulting from the loss of Ada2b, nor does complementation work vice versa, indicating that the two Ada2 genes of Drosophila have different functions. An analysis of germ line mosaics generated by pole-cell transplantation revealed that the Ada2a function (similar to that reported for Ada2b) is required in the female germ line. A loss of the function of either of the Ada2 genes interferes with cell proliferation. Interestingly, the Ada2b null mutation reduces histone H3 K14 and H3 K9 acetylation and changes TAF10 localization, while the Ada2a null mutation does not. Moreover, the two ADA2s are differently required for the expression of the rosy gene, involved in eye pigment production, and for Dmp53-mediated apoptosis. The data presented here demonstrate that the two genes encoding homologous transcriptional adaptor ADA2 proteins in Drosophila are both essential but are functionally distinct.


Molecular and Cellular Biology | 2006

The Drosophila Histone Acetyltransferase Gcn5 and Transcriptional Adaptor Ada2a Are Involved in Nucleosomal Histone H4 Acetylation

Anita Ciurciu; Orbán Komonyi; Tibor Pankotai; Imre Boros

ABSTRACT The histone acetyltransferase (HAT) Gcn5 plays a role in chromatin structure and gene expression regulation as a catalytic component of multiprotein complexes, some of which also contain Ada2-type transcriptional coactivators. Data obtained mostly from studies on yeast (Saccharomyces cerevisiae) suggest that Ada2 potentiates Gcn5 activity and substrate recognition. dAda2b, one of two related Ada2 proteins of Drosophila melanogaster, was recently found to play a role in complexes acetylating histone 3 (H3). Evidence of an in vivo functional link between the related coactivator dAda2a and dGcn5, however, is lacking. Here we present data on the genetic interaction of dGcn5 and dAda2a. The loss of either dGcn5 or dAda2a function results in similar chromosome structural and developmental defects. In dAda2a mutants, the nucleosomal H4 acetylation at lysines 12 and 5 is significantly reduced, while the acetylation established by dAda2b-containing Gcn5 complexes at H3 lysines 9 and 14 is unaffected. The data presented here, together with our earlier data on the function of dAda2b, provide evidence that related Ada2 proteins of Drosophila, together with Gcn5 HAT, are involved in the acetylation of specific lysine residues in the N-terminal tails of nucleosomal H3 and H4. Our data suggest dAda2a involvement in both uniformly distributed H4 acetylation and gene-specific transcription regulation.


Journal of Biological Chemistry | 2005

DTL, the Drosophila Homolog of PIMT/Tgs1 Nuclear Receptor Coactivator-interacting Protein/RNA Methyltransferase, Has an Essential Role in Development

Orbán Komonyi; Gabor Papai; Izzet Enünlü; Selen C. Muratoglu; Tibor Pankotai; Darija Kopitova; Péter Maróy; Andor Udvardy; Imre Boros

We describe a novel Drosophila gene, dtl (Drosophila Tat-like), which encodes a 60-kDa protein with RNA binding activity and a methyltransferase (MTase) domain. Dtl has an essential role in Drosophila development. The homologs of DTL recently described include PIMT (peroxisome proliferator-activated receptor-interacting protein with a methyltransferase domain), an RNA-binding protein that interacts with and enhances the nuclear receptor coactivator function, and TGS1, the methyltransferase involved in the formation of the 2,2,7-trimethylguanosine (m3G) cap of non-coding small RNAs. DTL is expressed throughout all of the developmental stages of Drosophila. The dtl mRNA has two ORFs (uORF and dORF). The product of dORF is the 60-kDa PIMT/TGS1 homolog protein that is translated from an internal AUG located 538 bp downstream from the 5′ end of the message. This product of dtl is responsible for the formation of the m3G cap of small RNAs of Drosophila. Trimethylguanosine synthase activity is essential in Drosophila. The deletion in the dORF or point mutation in the putative MTase active site results in a reduced pool of m3G cap-containing RNAs and lethality in the early pupa stage. The 5′ region of the dtl message also has the coding capacity (uORF) for a 178 amino acid protein. For complete rescue of the lethal phenotype of dtl mutants, the presence of the entire dtl transcription unit is required. Transgenes that carry mutations within the uORF restore the MTase activity but result in only partial rescue of the lethal phenotype. Interestingly, two transgenes bearing a mutation in uORF or dORF in trans can result in complete rescue.


EMBO Reports | 2008

The Drosophila NURF remodelling and the ATAC histone acetylase complexes functionally interact and are required for global chromosome organization

Clément Carré; Anita Ciurciu; Orbán Komonyi; Caroline Jacquier; Delphine Fagegaltier; Josette Pidoux; Hervé Tricoire; Laszlo Tora; Imre Boros; Christophe Antoniewski

Drosophila Gcn5 is the catalytic subunit of the SAGA and ATAC histone acetylase complexes. Here, we show that mutations in Gcn5 and the ATAC component Ada2a induce a decondensation of the male X chromosome, similar to that induced by mutations in the Iswi and Nurf301 subunits of the NURF nucleosome remodelling complex. Genetic studies as well as transcript profiling analysis indicate that ATAC and NURF regulate overlapping sets of target genes during development. In addition, we find that Ada2a chromosome binding and histone H4‐Lys12 acetylation are compromised in Iswi and Nurf301 mutants. Our results strongly suggest that NURF is required for ATAC to access the chromatin and to regulate global chromosome organization.


Nucleic Acids Research | 2009

The loss of histone H3 lysine 9 acetylation due to dSAGA-specific dAda2b mutation influences the expression of only a small subset of genes

Nóra Zsindely; Tibor Pankotai; Zsuzsanna Újfaludi; Dániel Lakatos; Orbán Komonyi; Laszlo Bodai; Laszlo Tora; Imre Boros

In Drosophila, the dADA2b-containing dSAGA complex is involved in histone H3 lysine 9 and 14 acetylation. Curiously, although the lysine 9- and 14-acetylated histone H3 levels are drastically reduced in dAda2b mutants, these animals survive until a late developmental stage. To study the molecular consequences of the loss of histone H3 lysine 9 and 14 acetylation, we compared the total messenger ribonucleic acid (mRNA) profiles of wild type and dAda2b mutant animals at two developmental stages. Global gene expression profiling indicates that the loss of dSAGA-specific H3 lysine 9 and 14 acetylation results in the expression change (up- or down-regulation) of a rather small subset of genes and does not cause a general transcription de-regulation. Among the genes up-regulated in dAda2b mutants, particularly high numbers are those which play roles in antimicrobial defense mechanisms. Results of chromatin immunoprecipitation experiments indicate that in dAda2b mutants, the lysine 9-acetylated histone H3 levels are decreased both at dSAGA up- and down-regulated genes. In contrast to that, in the promoters of dSAGA-independent ribosomal protein genes a high level of histone H3K9ac is maintained in dAda2b mutants. Our data suggest that by acetylating H3 at lysine 9, dSAGA modifies Pol II accessibility to specific promoters differently.


Journal of Cell Science | 2008

Loss of ATAC-specific acetylation of histone H4 at Lys12 reduces binding of JIL-1 to chromatin and phosphorylation of histone H3 at Ser10

Anita Ciurciu; Orbán Komonyi; Imre Boros

Various combinations of post-translational modifications of the N-terminal tails of nucleosomal histones serve as signals to govern chromatin-related processes. The relationship, however, among different types of histone modifications – most frequently acetylation, phosphorylation and methylation – and the order of their establishment has been explored only in a few cases. Here we show that a reduced level of histone H4 acetylated at Lys12 by the ATAC-HAT complex leads to a decrease in the histone H3 phosphorylation at Ser10 by the kinase JIL-1. As JIL-1 activity antagonizes histone H3 dimethylation at Lys9 by SU(VAR)3-9, our observations demonstrate the interdependent actions of an acetyltransferase, a kinase and a methyltransferase. We demonstrate that, in accord with the steps of modifications, mutations that affect ATAC subunits (such as dGcn5, dAda2a and dAda3) (1) decrease the level histone H3 phosphorylation at Ser10, (2) can be rescued partially by JIL-1 overproduction, (3) enhance the spread of histone H3 dimethylation at Lys9 and (4) are suppressed by mutations of Su(var)3-9. We propose that a reduced level of histone H4 acetylated at Lys12 by ATAC attenuates histone H3 phosphorylation at Ser10 by JIL-1 owing to reduced binding of JIL-1 to hypoacetylated chromatin.


Journal of Biological Chemistry | 2007

Daxx-like protein of Drosophila interacts with Dmp53 and affects longevity and Ark mRNA level.

Laszlo Bodai; Norbert Pardi; Zsuzsanna Újfaludi; Orsolya Bereczki; Orbán Komonyi; Éva Bálint; Imre Boros

Daxx-like protein (DLP), the Drosophila homolog of Daxx, binds Drosophila melanogaster p53 (Dmp53) through its C-terminal region. We generated DLP mutants and found that although DLP expression is developmentally regulated, it is not essential for the execution of the developmental program. The effects DLP mutations show in the loss of heterozygosity assay and on phenotypes resulting from Dmp53 overexpression indicate a genetic interaction between DLP and Dmp53. In contrast to Dmp53 mutants, however, loss of DLP does not result in radiosensitivity indicating that it does not play an essential role in the activation of Dmp53-dependent response after ionizing radiation, and DLP is also not required for the irradiation-induced activation of reaper. In contrast, DLP is involved in the transcriptional regulation of Ark, because Ark mRNA level is decreased in DLP mutants and increased upon ectopic overexpression of DLP. Interestingly, DLP mutants have reduced longevity and reduced female fertility. Altogether, our data suggest complex functions for DLP, which include an anti-apoptotic effect exerted through repression of some Dmp53 functions, and activation of some proapoptotic genes.


Gene | 2009

The RNA Pol II CTD phosphatase Fcp1 is essential for normal development in Drosophila melanogaster.

István Tombácz; Tamás Schauer; Ildikó Juhász; Orbán Komonyi; Imre Boros

The reversible phosphorylation-dephosphorylation of RNA polymerase II (Pol II) large subunit carboxyl terminal domain (CTD) during transcription cycles in eukaryotic cells generates signals for the steps of RNA synthesis and maturation. The major phosphatase specific for CTD dephosphorylation from yeast to mammals is the TFIIF-interacting CTD-phosphatase, Fcp1. We report here on the in vivo analysis of Fcp1 function in Drosophila using transgenic lines in which the phosphatase production is misregulated. Fcp1 function is essential throughout Drosophila development and ectopic up- or downregulation of fcp1 results in lethality. The fly Fcp1 binds to specific regions of the polytene chromosomes at many sites colocalized with Pol II. In accord with the strong evolutional conservation of Fcp1: (1) the Xenopus fcp1 can substitute the fly fcp1 function, (2) similarly to its S. pombe homologue, Drosophila melanogaster (Dm)Fcp1 interacts with the RPB4 subunit of Pol II, and (3) transient expression of DmFcp1 has a negative effect on transcription in mammalian cells. The in vivo experimental system described here suggests that fly Fcp1 is associated with the transcription engaged Pol II and offers versatile possibilities for studying this evolutionary conserved essential enzyme.

Collaboration


Dive into the Orbán Komonyi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabor Papai

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Laszlo Tora

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andor Udvardy

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge