Marco Zaru
University of Cagliari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Zaru.
International Journal of Pharmaceutics | 2013
Maria Letizia Manca; Marco Zaru; Maria Manconi; Francesco Lai; Donatella Valenti; Chiara Sinico; Anna Maria Fadda
This work describes glycerosomes, vesicles composed of phospholipids, glycerol, and water, as novel vesicular carriers for (trans)dermal drug delivery. In this work, glycerosomes were prepared by hydrating dipalmitoylglycerophosphatidylcholine-cholesterol films with glycerol aqueous solutions (10-30%, v/v). The model drug was diclofenac sodium salt and conventional liposomes were used as control. Prepared formulations were characterized in terms of size distribution, morphology, zeta potential, and vesicle deformability. Glycerosomes and liposomes were oligo/multilamellar vesicles, spherical in shape with a mean diameter ranging between 81 and 97 nm and a fairly narrow distribution (P.I.=0.14-0.19), negative zeta potential values (from -35 to -48) and drug loading capacity between 64 and 73%. Deformability index of both conventional liposomes and glycerosomes showed that glycerol is able to act as edge activator for dipalmitoylglycerophosphatidylcholine bilayers when used in concentration higher than 10%. DSC studies suggested that glycerosomes are in a more fluid state than conventional liposomes. In vitro transdermal delivery experiments showed an improved skin deposition and permeation of diclofenac when 20 and 30% glycerosomes were used. MTT test demonstrated that glycerosomes were able to reduce the in vitro drug toxicity versus keratinocytes.
Aaps Pharmscitech | 2005
Maria Letizia Manca; Marco Zaru; Guido Ennas; Donatella Valenti; Chiara Sinico; Giuseppe Loy; Anna Maria Fadda
The aim of this work was to study the influence of β-cyclodextrin (β-CD) on the biopharmaceutic properties of diclofenac (DCF). To this purpose the physicochemical characterization of diclofenac-β-cyclodextrin binary systems was performed both in solution and solid state. Solid phase characterization was performed using differential scanning calorimetry (DSC), powder x-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR). Phase solubility analyses, and in vitro permeation experiments through a synthetic membrane were performed in solution. Moreover, DCF/β-CD interactions were studied in DMSO by1H nuclear magnetic resonance (NMR) spectroscopy. The effects of different preparation methods and drug-to-β-CD molar ratios were also evaluated. Phase solubility studies revealed 1∶1 M complexation of DCF when the freeze-drying method was used for the preparation of the binary system. The true inclusion for the freeze-dried binary system was confirmed by1H NMR spectroscopy, DSC, powder XRD, and IR studies. The dissolution study revealed that the drug dissolution rate was improved by the presence of CDs and the highest and promptest release was obtained with the freeze-dried binary system. Diffusion experiments through a silicone membrane showed that DCF diffusion was higher from the saturated drug solution (control) than the freeze-dried inclusion complexes, prepared using different DCF-β-CD molar ratios. However, the presence of the inclusion complex was able to stabilize the system giving rise to a more regular diffusion profile.
Journal of Liposome Research | 2009
Marco Zaru; Chiara Sinico; Alessandro De Logu; Carla Caddeo; Francesco Lai; Maria Letizia Manca; Anna Maria Fadda
Mycobacterium avium complex (MAC), the most frequent cause of opportunistic nontuberculous pulmonary infection, is made up of a group of intracellular pathogens that are able to survive and multiply inside lung alveolar macrophages. As nebulized liposomes are reported to be effective to target antibacterial agents to macrophages, in this work we have prepared and characterized re-dispersible freeze-dried rifampicin (RFP)-loaded vesicles by using soy lecithin (SL) and a commercial, enriched mixture of soy phosphatidylcholine (Phospholipon 90, P90) with or without cholesterol. The obtained results showed that RFP could be loaded stably in SL vesicles only when cholesterol was not present in the film preparation, whereas with P90 vesicles, the highest stability was obtained with formulations prepared with P90/cholesterol 7:1 or 4:1 molar ratios. RFP-liposome aerosols were generated using an efficient high-output continuous-flow nebulizer, driven by a compressor. After the experiments, nebulization efficiency (NE%) and nebulization efficiency of the encapsulated drug (NEED%) were evaluated. The results of our study indicated that nebulization properties and viscosity of formulations prepared with the low-transition-temperature phospholipids, SL and P90, are affected by vesicle composition. However, all formulations showed a good stability during nebulization and they were able to retain more than 65% of the incorporated drug. The effect of liposome encapsulation on lung levels of RFP following aerosol inhalation was determined in rats. The in vitro intracellular activity of RFP-loaded liposomes against MAC residing in macrophage-like J774 cells was also evaluated. Results indicated that liposomes are able to inhibit the growth of MAC in infected macrophages and to reach the lower airways in rats.
Colloids and Surfaces B: Biointerfaces | 2014
Maria Letizia Manca; Ines Castangia; Carla Caddeo; Daniel Pando; Elvira Escribano; Donatella Valenti; Sandrina Lampis; Marco Zaru; Anna Maria Fadda; Maria Manconi
Quercetin was incorporated in glycerosomes, new phospholipid-glycerol vesicles, and their protective effect against oxidative stress skin damages was extensively evaluated. In particular, the concentration-dependent effect of glycerol (from 10 to 50%) on vesicle suitability as cutaneous carriers of quercetin was carefully assessed. All vesicles were unilamellar and small in size (∼80-110 nm), as confirmed by cryo-TEM observation, with a drug incorporation efficiency ranging between 81 and 91%. SAXS studies, performed to investigate the bilayer arrangement, indicated a strong, dose-dependent interaction of glycerol with the polar portions of the phospholipid molecules, while quercetin did not significantly change the bilayer packing. In vitro studies on newborn pig skin underlined the concentration-dependent ability of glycerosomes to promote quercetin accumulation in the different layers, also confirmed by confocal microscopic observation of skin treated with fluorescent vesicles. Quercetin incorporated into liposomal and glycerosomal nanoformulations showed a strong ability to scavenge free radicals (DPPH test) and protect human keratinocytes in vitro against hydrogen peroxide damage. Moreover, quercetin-loaded vesicles were avidly taken up by keratinocytes in vitro. Overall, results indicate 40 and 50% glycerosomes as promising nanosystems for the improvement of cutaneous quercetin delivery and keratinocyte protection against oxidative stress damage.
International Journal of Pharmaceutics | 2016
Maria Letizia Manca; Pietro Matricardi; Claudia Cencetti; José Esteban Peris; Virginia Melis; Claudia Carbone; Elvira Escribano; Marco Zaru; Anna Maria Fadda; Maria Manconi
Allantoin is traditionally employed in the treatment of skin ulcers and hypertrophic scars. In the present work, to improve its local deposition in the skin and deeper tissues, allantoin was incorporated in conventional liposomes and in new argan oil enriched liposomes. In both cases, obtained vesicles were unilamellar, as confirmed by cryo-TEM observation, but the addition of argan oil allowed a slight increase of the mean diameter (∼130nm versus ∼85nm). The formulations, especially those containing argan oil, favoured the allantoin accumulation in the skin, in particular in the dermis (∼8.7μg/cm(2)), and its permeation through the skin (∼33μg/cm(2)). The performances of vesicles as skin delivery systems were compared with those obtained by water dispersion of allantoin and the commercial gel, Sameplast(®). Moreover, in this work, for the first time, the elastic and viscous moduli of the skin were measured, underlining the different hydrating/moisturizing effects of the formulations. The application of ARG liposomes seems to provide a softening and relaxing effect on the skin, thus facilitating the drug accumulation and passage into and trough it.
International Journal of Pharmaceutics | 2016
Maria Letizia Manca; Claudia Cencetti; Pietro Matricardi; Ines Castangia; Marco Zaru; Octavio Diez Sales; Amparo Nácher; Donatella Valenti; Anna Maria Maccioni; Anna Maria Fadda; Maria Manconi
In this work, diclofenac was encapsulated, as sodium salt, in glycerosomes containing 10, 20 or 30% of glycerol in the water phase with the aim to ameliorate its topical efficacy. Taking into account previous findings, glycerosome formulation was modified, in terms of economic suitability, using a cheap and commercially available mixture of hydrogenated soy phosphatidylcholine (P90H). P90H glycerosomes were spherical and multilamellar; photon correlation spectroscopy showed that obtained vesicles were ∼131nm, slightly larger and more polydispersed than those made with dipalmitoylphosphatidylcholine (DPPC) but, surprisingly, they were able to ameliorate the local delivery of diclofenac, which was improved with respect to previous findings, in particular using glycerosomes containing high amount of glycerol (20 and 30%). Finally, this drug delivery system showed a high in vitro biocompatibility toward human keratinocytes.
International Journal of Pharmaceutics | 2016
Maria Manconi; Maria Letizia Manca; Francesca Marongiu; Carla Caddeo; Ines Castangia; Giacomo Luigi Petretto; Giorgio Antonio Mario Pintore; Giorgia Sarais; Guy D’hallewin; Marco Zaru; Gianluigi Bacchetta; Anna Maria Fadda
The components of pompia, a hybrid Citrus species cultivated only in Sardinia (Italy), were extracted using an environmentally-friendly method and food-grade solvents. Taking into account that only few data are available on pompia composition, the phytochemical fingerprint of its rind extract was obtained by accurate component separation and identification, combining HPLC and mass spectrometry. Different flavones such as naringin (23.77μg/mg), neoeriocitrin (46.53μg/mg) and neohesperidin (44.57μg/mg) were identified. Additionally, the antioxidant activity and phenolic content were confirmed by DPPH and Folin-Ciocalteu assays. The whole extract was incorporated in innovative phospholipid vesicles, namely glycerosomes, hyalurosomes and glycerol containing hyalurosomes, which were prepared using a high ratio of extract/phospholipid (1/3.5w/w). The in vitro biocompatibility of the nanoincorporated extract and its ability to potentiate the aptitude of the extract to counteract oxidative stress in skin cells were evaluated. The vesicles, especially glycerol containing hyalurosomes, were able to prevent oxidative damage and death of both keratinocytes and fibroblasts, promoting their viability.
International Journal of Pharmaceutics | 2017
Maria Letizia Manca; Maria Manconi; Marco Zaru; Donatella Valenti; José Esteban Peris; Pietro Matricardi; Anna Maria Maccioni; Anna Maria Fadda
Glycerosomes were formulated using 1,2-dimyristoyl-sn-glycero-3-phosphatidycholine (DMPC), diclofenac sodium salt and 10, 20 or 30% glycerol in the water phase, while corresponding liposomes were prepared with the same amount of DMPC and diclofenac, without glycerol. The aim of the present work was to evaluate the effect of the used phospholipid on vesicle features and ability to favour diclofenac skin deposition by comparing these results with those found in previous works performed using hydrogenated soy phosphatidylcholine (P90H) and dipalmitoylphosphatidylcholine (DPPC). Liposomes and glycerosomes were multilamellar, liposomes being smaller (72±6nm). Interactions among glycerol, phospholipids and drug led to the formation of a non-rigid bilayer structure and a variation of the main transition temperature, which shifted to lower temperature. The addition of glycerol led to the formation of more viscous systems (from ∼2.5mPa/s for basic liposomes to ∼5mPa/s for glycerosomes), which improved spread ability of the formulations on the skin.Results obtained in vitro were promising using glycerosomes, irrespective of the amount of glycerol used: the amount of drug, which accumulated into and permeated through the different skin strata, was high and comparable with that obtained using P90H, suggesting that glycerosomes may represent an efficient carrier for both local effect or systemic absorption.
International Journal of Nanomedicine | 2007
Francesco Lai; Chiara Sinico; Alessandro De Logu; Marco Zaru; Rainer H. Müller; Anna Maria Fadda
Industrial Crops and Products | 2016
Maria Letizia Manca; Francesca Marongiu; Ines Castangia; Ana Catalán-Latorre; Carla Caddeo; Gianluigi Bacchetta; Guido Ennas; Marco Zaru; Anna Maria Fadda; Maria Manconi