Inês Loureiro
Instituto de Biologia Molecular e Celular
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Inês Loureiro.
ChemMedChem | 2010
Joana Tavares; Ali Ouaissi; Paul Kong Thoo Lin; Inês Loureiro; Simranjeet Kaur; Nilanjan Roy; Anabela Cordeiro-da-Silva
The NAD+‐dependent deacetylases, namely sirtuins, are involved in the regulation of a variety of biological processes such as gene silencing, DNA repair, longevity, metabolism, apoptosis, and development. An enzyme from the parasite Leishmania infantum that belongs to this family, LiSIR2RP1, is a NAD+‐dependent tubulin deacetylase and an ADP‐ribosyltransferase. This enzymes involvement in L. infantum virulence and survival underscores its potential as a drug target. Our search for selective inhibitors of LiSIR2RP1 has led, for the first time, to the identification of the antiparasitic and anticancer bisnaphthalimidopropyl (BNIP) alkyl di‐ and triamines (IC50 values in the single‐digit micromolar range for the most potent compounds). Structure–activity studies were conducted with 12 BNIP derivatives that differ in the length of the central alkyl chain, which links the two naphthalimidopropyl moieties. The most active and selective compound is the BNIP diaminononane (BNIPDanon), with IC50 values of 5.7 and 97.4 μM against the parasite and human forms (SIRT1) of the enzyme, respectively. Furthermore, this compound is an NAD+‐competitive inhibitor that interacts differently with the parasite and human enzymes, as determined by docking analysis, which might explain its selectivity toward the parasitic enzyme.
PLOS Neglected Tropical Diseases | 2012
Diana Moreira; Nuno Santarém; Inês Loureiro; Joana Tavares; Ana M. G. Silva; Ana Marina Amorim; Ali Ouaissi; Anabela Cordeiro-da-Silva; Ricardo Silvestre
Experimental infections with visceral Leishmania spp. are frequently performed referring to stationary parasite cultures that are comprised of a mixture of metacyclic and non-metacyclic parasites often with little regard to time of culture and metacyclic purification. This may lead to misleading or irreproducible experimental data. It is known that the maintenance of Leishmania spp. in vitro results in a progressive loss of virulence that can be reverted by passage in a mammalian host. In the present study, we aimed to characterize the loss of virulence in culture comparing the in vitro and in vivo infection and immunological profile of L. infantum stationary promastigotes submitted to successive periods of in vitro cultivation. To evaluate the effect of axenic in vitro culture in parasite virulence, we submitted L. infantum promastigotes to 4, 21 or 31 successive in vitro passages. Our results demonstrated a rapid and significant loss of parasite virulence when parasites are sustained in axenic culture. Strikingly, the parasite capacity to modulate macrophage activation decreased significantly with the augmentation of the number of in vitro passages. We validated these in vitro observations using an experimental murine model of infection. A significant correlation was found between higher parasite burdens and lower number of in vitro passages in infected Balb/c mice. Furthermore, we have demonstrated that the virulence deficit caused by successive in vitro passages results from an inadequate capacity to differentiate into amastigote forms. In conclusion, our data demonstrated that the use of parasites with distinct periods of axenic in vitro culture induce distinct infection rates and immunological responses and correlated this phenotype with a rapid loss of promastigote differentiation capacity. These results highlight the need for a standard operating protocol (SOP) when studying Leishmania species.
American Journal of Pathology | 2010
Bruno Miguel Neves; Ricardo Silvestre; Mariana Resende; Ali Ouaissi; Joana Cunha; Joana Tavares; Inês Loureiro; Nuno Santarém; Ana M. G. Silva; Maria Celeste Lopes; Maria Teresa Cruz; Anabela Cordeiro da Silva
Understanding the complex interactions between Leishmania and dendritic cells (DCs) is central to the modulation of the outcome of this infection, given that an effective immune response against Leishmania is dependent on the successful activation and maturation of DCs. We report here that Leishmania infantum promastigotes successfully infect mouse bone marrow-derived DCs without triggering maturation, as shown by a failure in the up-regulation of CD40 and CD86 expression, and that parasites strongly counteract the lipopolysaccharide-triggered maturation of DCs. A small increase in interleukin (IL)-12 and IL-10 transcription and secretion and a decrease in IL-6 were observed in infected cells. This arrested DC maturation state is actively promoted by parasites because heat-killed or fixed parasites increased cytokine and costimulatory molecule expression. At a molecular level, L. infantum rapidly induced activation of phosphatidylinositol 3-kinase/Akt and extracellular signal-regulated kinase 1/2, whereas no effect was observed in the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase proinflammatory pathways. Moreover, parasites actively promoted cleavage of the nuclear factor-κB p65(RelA) subunit, causing its impairment. The blockade of phosphatidylinositol 3-kinase/Akt by either treatment of bone marrow-derived DCs with wortmannin or transfection with an Akt dominant-negative mutant resulted in a strong decrease in infection rates, revealing for the first time a crucial role of this pathway on Leishmania engulfment by DCs. Overall, our data indicate that activation of Akt and impairment of nuclear factor-κB are responsible for immunogenicity subversion of L. infantum-infected DCs.
Scientific Reports | 2016
Joana Faria; Inês Loureiro; Nuno Santarém; Pedro Cecílio; Sandra Macedo-Ribeiro; Joana Tavares; Anabela Cordeiro-da-Silva
Ribose-5-phosphate isomerase (RPI) belongs to the non-oxidative branch of the pentose phosphate pathway, catalysing the inter-conversion of D-ribose-5-phosphate and D-ribulose-5-phosphate. Trypanosomatids encode a type B RPI, whereas humans have a structurally unrelated type A, making RPIB worthy of exploration as a potential drug target. Null mutant generation in Leishmania infantum was only possible when an episomal copy of RPIB gene was provided, and the latter was retained both in vitro and in vivo in the absence of drug pressure. This suggests the gene is essential for parasite survival. Importantly, the inability to remove the second allele of RPIB gene in sKO mutants complemented with an episomal copy of RPIB carrying a mutation that abolishes isomerase activity suggests the essentiality is due to its metabolic function. In vitro, sKO promastigotes exhibited no defect in growth, metacyclogenesis or macrophage infection, however, an impairment in intracellular amastigotes’ replication was observed. Additionally, mice infected with sKO mutants rescued by RPIB complementation had a reduced parasite burden in the liver. Likewise, Trypanosoma brucei is resistant to complete RPIB gene removal and mice infected with sKO mutants showed prolonged survival upon infection. Taken together our results genetically validate RPIB as a potential drug target in trypanosomatids.
Antimicrobial Agents and Chemotherapy | 2016
Nuno A. G. Graça; Luís Gaspar; David Costa; Inês Loureiro; Paul Kong Thoo-Lin; Isbaal Ramos; Meritxell Roura; Alain Pruvost; Ian K. Pemberton; Hadjer Loukil; Jane MacDougall; Joana Tavares; Anabela Cordeiro-da-Silva
ABSTRACT Current treatments for African trypanosomiasis are either toxic, costly, difficult to administer, or prone to elicit resistance. This study evaluated the activity of bisnaphthalimidopropyl (BNIP) derivatives against Trypanosoma brucei. BNIPDiaminobutane (BNIPDabut), the most active of these compounds, showed in vitro inhibition in the single-unit nanomolar range, similar to the activity in the reference drug pentamidine, and presented low toxicity and adequate metabolic stability. Additionally, using a murine model of acute infection and live imaging, a significant decrease in parasite load in BNIPDabut-treated mice was observed. However, cure was not achieved. BNIPDabut constitutes a new scaffold for antitrypanosomal drugs that deserves further consideration.
PLOS Neglected Tropical Diseases | 2016
Joana Faria; Inês Loureiro; Nuno Santarém; Sandra Macedo-Ribeiro; Joana Tavares; Anabela Cordeiro-da-Silva
A growing interest in asparagine (Asn) metabolism has currently been observed in cancer and infection fields. Asparagine synthetase (AS) is responsible for the conversion of aspartate into Asn in an ATP-dependent manner, using ammonia or glutamine as a nitrogen source. There are two structurally distinct AS: the strictly ammonia dependent, type A, and the type B, which preferably uses glutamine. Absent in humans and present in trypanosomatids, AS-A was worthy of exploring as a potential drug target candidate. Appealingly, it was reported that AS-A was essential in Leishmania donovani, making it a promising drug target. In the work herein we demonstrate that Leishmania infantum AS-A, similarly to Trypanosoma spp. and L. donovani, is able to use both ammonia and glutamine as nitrogen donors. Moreover, we have successfully generated LiASA null mutants by targeted gene replacement in L. infantum, and these parasites do not display any significant growth or infectivity defect. Indeed, a severe impairment of in vitro growth was only observed when null mutants were cultured in asparagine limiting conditions. Altogether our results demonstrate that despite being important under asparagine limitation, LiAS-A is not essential for parasite survival, growth or infectivity in normal in vitro and in vivo conditions. Therefore we exclude AS-A as a suitable drug target against L. infantum parasites.
Scientific Reports | 2018
David Costa; Mónica Sá; Ana Rafaela Teixeira; Inês Loureiro; Catherine Thouvenot; Sylvain Golba; Rogerio Amino; Joana Tavares
Plasmodium sporozoites deposited in the skin following a mosquito bite must migrate and invade blood vessels to complete their development in the liver. Once in the bloodstream, sporozoites arrest in the liver sinusoids, but the molecular determinants that mediate this specific homing are not yet genetically defined. Here we investigate the involvement of the thrombospondin-related sporozoite protein (TRSP) in this process using knockout Plasmodium berghei parasites and in vivo bioluminescence imaging in mice. Resorting to a homing assay, trsp knockout sporozoites were found to arrest in the liver similar to control parasites. Moreover, we found no defects in the establishment of infection in mice following inoculation of trsp knockout sporozoites via intravenous and cutaneous injection or mosquito bite. Accordingly, mutant sporozoites were also able to successfully invade hepatocytes in vitro. Altogether, these results suggest TRSP may have a redundant role in the completion of the pre-erythrocytic phase of the malaria parasite. Nonetheless, identifying molecules with paramount roles in this phase could aid in the search for new antigens needed for the design of a protective vaccine against malaria.
PLOS Neglected Tropical Diseases | 2015
Inês Loureiro; Joana Faria; Christine Clayton; Sandra Macedo-Ribeiro; Nuno Santarém; Nilanjan Roy; Anabela Cordeiro-da-Siva; Joana Tavares
PLOS Neglected Tropical Diseases | 2013
Inês Loureiro; Joana Faria; Christine Clayton; Sandra Ribeiro; Nilanjan Roy; Nuno Santarém; Joana Tavares; Anabela Cordeiro-da-Silva
PLOS Neglected Tropical Diseases | 2013
Inês Loureiro; Joana Faria; Christine Clayton; Sandra Ribeiro; Nilanjan Roy; Nuno Santarém; Joana Tavares; Anabela Cordeiro-da-Silva