Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joana Tavares is active.

Publication


Featured researches published by Joana Tavares.


European Journal of Pharmaceutics and Biopharmaceutics | 2008

Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles

Olga Borges; Anabela Cordeiro-da-Silva; Joana Tavares; Nuno Santarém; Adriano de Sousa; Gerrit Borchard; H.E. Junginger

Alginate coated chitosan nanoparticles were previously developed with the aim of protecting the antigen, adsorbed on the surface of those chitosan nanoparticles, from enzymatic degradation at mucosal surfaces. In this work, this new delivery system was loaded with the recombinant hepatitis B surface antigen (HBsAg) and applied to mice by the intranasal route. Adjuvant effect of the delivery system was studied by measuring anti-HBsAg IgG in serum, anti-HBsAg sIgA in faeces extracts or nasal and vaginal secretions and interferon-gamma production in supernatants of the spleen cells. The mice were primed with 10 microg of the vaccine associated or not with nanoparticles and associated or not with 10 microg CpG oligodeoxynucleotide (ODN) followed by two sequential boosts at three week intervals. The association of HBsAg with the alginate coated chitosan nanoparticles, administered intranasally to the mice, gave rise to the humoral mucosal immune response. Humoral systemic immune response was not induced by the HBsAg loaded nanoparticles alone. The generation of Th1-biased antigen-specific systemic antibodies, however, was observed when HBsAg loaded nanoparticles were applied together with a second adjuvant, the immunopotentiator, CpG ODN. Moreover, all intranasally vaccinated groups showed higher interferon-gamma production when compared to naïve mice.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Development of the malaria parasite in the skin of the mammalian host

Pascale Gueirard; Joana Tavares; Sabine Thiberge; Florence Bernex; Tomoko Ishino; Geneviève Milon; Blandine Franke-Fayard; Chris J. Janse; Robert Ménard; Rogerio Amino

The first step of Plasmodium development in vertebrates is the transformation of the sporozoite, the parasite stage injected by the mosquito in the skin, into merozoites, the stage that invades erythrocytes and initiates the disease. The current view is that, in mammals, this stage conversion occurs only inside hepatocytes. Here, we document the transformation of sporozoites of rodent-infecting Plasmodium into merozoites in the skin of mice. After mosquito bite, ∼50% of the parasites remain in the skin, and at 24 h ∼10% are developing in the epidermis and the dermis, as well as in the immunoprivileged hair follicles where they can survive for weeks. The parasite developmental pathway in skin cells, although frequently abortive, leads to the generation of merozoites that are infective to erythrocytes and are released via merosomes, as typically observed in the liver. Therefore, during malaria in rodents, the skin is not just the route to the liver but is also the final destination for many inoculated parasites, where they can differentiate into merozoites and possibly persist.


BioMed Research International | 2007

Immune Response Regulation by Leishmania Secreted and Nonsecreted Antigens

Nuno Santarém; Ricardo Silvestre; Joana Tavares; Marta Silva; Sofia Menezes Cabral; Joana Maciel; Anabela Cordeiro-da-Silva

Leishmania infection consists in two sequential events, the host cell colonization followed by the proliferation/dissemination of the parasite. In this review, we discuss the importance of two distinct sets of molecules, the secreted and/or surface and the nonsecreted antigens. The importance of the immune response against secreted and surface antigens is noted in the establishment of the infection and we dissect the contribution of the nonsecreted antigens in the immunopathology associated with leishmaniasis, showing the importance of these panantigens during the course of the infection. As a further example of proteins belonging to these two different groups, we include several laboratorial observations on Leishmania Sir2 and LicTXNPx as excreted/secreted proteins and LmS3arp and LimTXNPx as nonsecreted/panantigens. The role of these two groups of antigens in the immune response observed during the infection is discussed.


ChemMedChem | 2010

Bisnaphthalimidopropyl Derivatives as Inhibitors of Leishmania SIR2 Related Protein 1

Joana Tavares; Ali Ouaissi; Paul Kong Thoo Lin; Inês Loureiro; Simranjeet Kaur; Nilanjan Roy; Anabela Cordeiro-da-Silva

The NAD+‐dependent deacetylases, namely sirtuins, are involved in the regulation of a variety of biological processes such as gene silencing, DNA repair, longevity, metabolism, apoptosis, and development. An enzyme from the parasite Leishmania infantum that belongs to this family, LiSIR2RP1, is a NAD+‐dependent tubulin deacetylase and an ADP‐ribosyltransferase. This enzymes involvement in L. infantum virulence and survival underscores its potential as a drug target. Our search for selective inhibitors of LiSIR2RP1 has led, for the first time, to the identification of the antiparasitic and anticancer bisnaphthalimidopropyl (BNIP) alkyl di‐ and triamines (IC50 values in the single‐digit micromolar range for the most potent compounds). Structure–activity studies were conducted with 12 BNIP derivatives that differ in the length of the central alkyl chain, which links the two naphthalimidopropyl moieties. The most active and selective compound is the BNIP diaminononane (BNIPDanon), with IC50 values of 5.7 and 97.4 μM against the parasite and human forms (SIRT1) of the enzyme, respectively. Furthermore, this compound is an NAD+‐competitive inhibitor that interacts differently with the parasite and human enzymes, as determined by docking analysis, which might explain its selectivity toward the parasitic enzyme.


PLOS Neglected Tropical Diseases | 2012

Impact of Continuous Axenic Cultivation in Leishmania infantum Virulence

Diana Moreira; Nuno Santarém; Inês Loureiro; Joana Tavares; Ana M. G. Silva; Ana Marina Amorim; Ali Ouaissi; Anabela Cordeiro-da-Silva; Ricardo Silvestre

Experimental infections with visceral Leishmania spp. are frequently performed referring to stationary parasite cultures that are comprised of a mixture of metacyclic and non-metacyclic parasites often with little regard to time of culture and metacyclic purification. This may lead to misleading or irreproducible experimental data. It is known that the maintenance of Leishmania spp. in vitro results in a progressive loss of virulence that can be reverted by passage in a mammalian host. In the present study, we aimed to characterize the loss of virulence in culture comparing the in vitro and in vivo infection and immunological profile of L. infantum stationary promastigotes submitted to successive periods of in vitro cultivation. To evaluate the effect of axenic in vitro culture in parasite virulence, we submitted L. infantum promastigotes to 4, 21 or 31 successive in vitro passages. Our results demonstrated a rapid and significant loss of parasite virulence when parasites are sustained in axenic culture. Strikingly, the parasite capacity to modulate macrophage activation decreased significantly with the augmentation of the number of in vitro passages. We validated these in vitro observations using an experimental murine model of infection. A significant correlation was found between higher parasite burdens and lower number of in vitro passages in infected Balb/c mice. Furthermore, we have demonstrated that the virulence deficit caused by successive in vitro passages results from an inadequate capacity to differentiate into amastigote forms. In conclusion, our data demonstrated that the use of parasites with distinct periods of axenic in vitro culture induce distinct infection rates and immunological responses and correlated this phenotype with a rapid loss of promastigote differentiation capacity. These results highlight the need for a standard operating protocol (SOP) when studying Leishmania species.


Biochemical Journal | 2008

The Leishmania infantum cytosolic SIR2-related protein 1 (LiSIR2RP1) is an NAD+-dependent deacetylase and ADP-ribosyltransferase

Joana Tavares; Ali Ouaissi; Nuno Santarém; Denis Sereno; Baptiste Vergnes; Paula Sampaio; Anabela Cordeiro-da-Silva

Proteins of the SIR2 (Silent Information Regulator 2) family are characterized by a conserved catalytic domain that exerts unique NAD(+)-dependent deacetylase activity on histones and various other cellular substrates. Previous reports from us have identified a Leishmania infantum gene encoding a cytosolic protein termed LiSIR2RP1 (Leishmania infantum SIR2-related protein 1) that belongs to the SIR2 family. Targeted disruption of one LiSIR2RP1 gene allele led to decreased amastigote virulence, in vitro as well as in vivo. In the present study, attempts were made for the first time to explore and characterize the enzymatic functions of LiSIR2RP1. The LiSIR2RP1 exhibited robust NAD(+)-dependent deacetylase and ADP-ribosyltransferase activities. Moreover, LiSIR2RP1 is capable of deacetylating tubulin, either in dimers or, when present, in taxol-stabilized microtubules or in promastigote and amastigote extracts. Furthermore, the immunostaining of parasites revealed a partial co-localization of alpha-tubulin and LiSIR2RP1 with punctate labelling, seen on the periphery of both promastigote and amastigote stages. Isolated parasite cytoskeleton reacted with antibodies showed that part of LiSIR2RP1 is associated to the cytoskeleton network of both promastigote and amastigote forms. Moreover, the Western blot analysis of the soluble and insoluble fractions of the detergent of promastigote and amastigote forms revealed the presence of alpha-tubulin in the insoluble fraction, and the LiSIR2RP1 distributed in both soluble and insoluble fractions of promastigotes as well as amastigotes. Collectively, the results of the present study demonstrate that LiSIR2RP1 is an NAD(+)-dependent deacetylase that also exerts an ADP-ribosyltransferase activity. The fact that tubulin could be among the targets of LiSIR2RP1 may have significant implications during the remodelling of the morphology of the parasite and its interaction with the host cell.


Immunology | 2006

Leishmania cytosolic silent information regulatory protein 2 deacetylase induces murine B-cell differentiation and in vivo production of specific antibodies

Ricardo Silvestre; Anabela Cordeiro-da-Silva; Joana Tavares; Denis Sereno; Ali Ouaissi

In previous studies, we identified a gene product belonging to the silent information regulatory 2 protein (SIR2) family. This protein is expressed by all Leishmania species so far examined (L. major, L. infantum, L. amazonensis, L. mexicana) and found to be crucial for parasite survival and virulence. In the present study, we investigated whether a Leishmania SIR2 recombinant protein (LmSIR2) would affect T‐ and B‐cell functions in a murine model. In vitro treatment of spleen cells from normal BALB/c mice with LmSIR2 showed increased expression of CD69 on B cells. This effect was not abolished by the addition of polymyxin B. Intravenous injection of LmSIR2 into BALB/c mice induced increased spleen B cell number by a factor of about ≈1·6, whereas no modification occurred at the level of CD4+ and CD8+ cells. Furthermore, intraperitoneal injection of LmSIR2 alone without adjuvant into BALB/c mice or nude mice triggered the production of elevated levels of LmSIR2‐specific antibodies. The analysis of specific isotype profiles showed a predominance of immunoglobulin G1 (IgG1) and IgG2a antibody responses in BALB/c mice, and IgM in nude mice. Moreover, the anti‐LmSIR2 mouse antibodies in the presence of complement induced the in vitro lysis of L. infantum amastigotes. In the absence of complement, the antibodies induced significant inhibition of amastigotes developpement inside macrophages. Together, the current study provides the first evidence that a Leishmania protein belonging to the SIR2 family may play a role in the regulation of immune response through its capacity to trigger B‐cell effector function.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Characterization and evaluation of BNIPDaoct- loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies

Sofia A. Costa Lima; Mariana Resende; Ricardo Silvestre; Joana Tavares; Ali Ouaissi; Paul Kong Thoo Lin; Anabela Cordeiro-da-Silva

OBJECTIVE To overcome the limitation of bisnaphthalimidopropyldiaaminooctane (BNIPDaoct) low physiological solubility and potentially increase its efficiency against visceral leishmaniasis (VL), a delivery system based on poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles was developed. MATERIALS & METHODS BNIPDaoct-PLGA nanoparticles were prepared by nanoprecipitation and characterized. Anti-Leishmania activity was evaluated using in vitro and in vivo VL infection models. RESULTS BNIPDaoct-PLGA nanoparticles were successfully produced and were sized at 156.0 ± 2.8 nm with an encapsulation efficiency of approximately 85%. The PLGA nanoparticles reduced BNIPDaoct cellular toxicity, retained its in vitro anti-leishmanial activity and led to a significant reduction (∼80%) in the parasite burden in the infected mice spleen when compared with the free drug or amphotericin B. In the liver the effect was less pronounced, with a 30-50% reduction observed between the nanoformulation and the BNIPDaoct per se or the amphotericin B, respectively. CONCLUSION PLGA nanoparticles provide controlled and effective delivery of BNIPDaoct for treatment of VL.


Chemical Biology & Drug Design | 2008

Structure Function Analysis of Leishmania Sirtuin: An Ensemble of In Silico and Biochemical Studies

Rameshwar U. Kadam; Joana Tavares; V.M. Kiran; Anabela Cordeiro; Ali Ouaissi; Nilanjan Roy

Novel anti‐leishmanial target LmSir2 has few subtle but prudent structural differences in ligand binding and catalytic domain as compared to its human counterpart. In silico screening and validation followed by in vitro deacetylation and cell killing assays described herein give a proof of concept for development of strategies exploiting such minor differences for screening libraries of small molecules to identify selective inhibitors.


Parasite Immunology | 2012

Characterization of Leishmania infantum thiol-dependent reductase 1 and evaluation of its potential to induce immune protection

Ana M. G. Silva; Joana Tavares; Ricardo Silvestre; Ali Ouaissi; Graham H. Coombs; Anabela Cordeiro-da-Silva

The need to develop an effective vaccine against leishmaniasis to prevent the 2 million new cases each year led to the search for antigens able to elicit protection against infection with Leishmania. In this study, we have characterized a parasite‐specific protein of Leishmania infantum named thiol‐dependent reductase 1 (TDR1). The protein is present in both life cycle stages of L. infantum with a notable higher expression in the amastigote forms, suggesting a role in the interaction between the parasite and the mammalian host. Thiol‐dependent reductase 1 is localized in the cytosol, although we were able to detect the protein in the culture medium of both promastigotes and axenic amastigotes, and consequently, TDR1 is considered an excreted/secreted molecule of the parasite. Therefore, we have evaluated the potential of TDR1 recombinant protein to protect against experimental challenge with L. infantum parasites using a murine model. Despite a reduction in spleen parasite load in the chronic phase of disease, TDR1 administration was not effective in the protection of Balb/c mice against visceral leishmaniasis and thus TDR1 do not have a crucial role in the modulation of mammalian host immune response, as observed with its protein counterpart Tc52 of Trypanosoma cruzi.

Collaboration


Dive into the Joana Tavares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Ouaissi

Instituto de Biologia Molecular e Celular

View shared research outputs
Top Co-Authors

Avatar

Nuno Santarém

Instituto de Biologia Molecular e Celular

View shared research outputs
Top Co-Authors

Avatar

Inês Loureiro

Instituto de Biologia Molecular e Celular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ricardo Silvestre

Instituto de Biologia Molecular e Celular

View shared research outputs
Top Co-Authors

Avatar

Ana M. Tomás

Instituto de Biologia Molecular e Celular

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge