Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inga Bauer is active.

Publication


Featured researches published by Inga Bauer.


Journal of Biological Chemistry | 2012

The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses

Inga Bauer; Alessia Grozio; Denise Lasigliè; Giovanna Basile; Laura Sturla; Mirko Magnone; Giovanna Sociali; Debora Soncini; Irene Caffa; Alessandro Poggi; Gabriele Zoppoli; Michele Cea; Georg Feldmann; Raul Mostoslavsky; Alberto Ballestrero; Franco Patrone; Santina Bruzzone; Alessio Nencioni

Background: Cytokine secretion has unwanted consequences in malignant and in inflammatory disorders. The deacetylase SIRT6 has pro-inflammatory activity, but the underlying mechanisms and its biological significance remain unclear. Results: SIRT6 enhances cytokine secretion and cell motility in pancreatic cancer cells by activating Ca2+ signaling. Conclusion: SIRT6 promotes Ca2+-dependent responses. Significance: SIRT6 inhibitors may help combat malignant and inflammatory disorders. Cytokine secretion by cancer cells contributes to cancer-induced symptoms and angiogenesis. Studies show that the sirtuin SIRT6 promotes inflammation by enhancing TNF expression. Here, we aimed to determine whether SIRT6 is involved in conferring an inflammatory phenotype to cancer cells and to define the mechanisms linking SIRT6 to inflammation. We show that SIRT6 enhances the expression of pro-inflammatory cyto-/chemokines, such as IL8 and TNF, and promotes cell migration in pancreatic cancer cells by enhancing Ca2+ responses. Via its enzymatic activity, SIRT6 increases the intracellular levels of ADP-ribose, an activator of the Ca2+ channel TRPM2. In turn, TRPM2 and Ca2+ are shown to be involved in SIRT6-induced TNF and IL8 expression. SIRT6 increases the nuclear levels of the Ca2+-dependent transcription factor, nuclear factor of activated T cells (NFAT), and cyclosporin A, a calcineurin inhibitor that reduces NFAT activity, reduces TNF and IL8 expression in SIRT6-overexpressing cells. These results implicate a role for SIRT6 in the synthesis of Ca2+-mobilizing second messengers, in the regulation of Ca2+-dependent transcription factors, and in the expression of pro-inflammatory, pro-angiogenic, and chemotactic cytokines. SIRT6 inhibition may help combat cancer-induced inflammation, angiogenesis, and metastasis.


Antioxidants & Redox Signaling | 2013

Inhibition of Nicotinamide Phosphoribosyltransferase Reduces Neutrophil-Mediated Injury in Myocardial Infarction

Fabrizio Montecucco; Inga Bauer; Vincent Braunersreuther; Santina Bruzzone; Alexander Akhmedov; Thomas F. Lüscher; Timo Speer; Alessandro Poggi; Elena Mannino; Graziano Pelli; Katia Galan; Maria Bertolotto; Sébastien Lenglet; Anna Garuti; Christophe Montessuit; René Lerch; Corinne Pellieux; Nicolas Vuilleumier; Franco Dallegri; Jacqueline Mage; Carlos Sebastian; Raul Mostoslavsky; Angèle Gayet-Ageron; Franco Patrone; François Mach; Alessio Nencioni

AIMS Nicotinamide phosphoribosyltransferase (Nampt) is a key enzyme for nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, and recent evidence indicates its role in inflammatory processes. Here, we investigated the potential effects of pharmacological Nampt inhibition with FK866 in a mouse myocardial ischemia/reperfusion model. In vivo and ex vivo mouse myocardial ischemia/reperfusion procedures were performed. RESULTS Treatment with FK866 reduced myocardial infarct size, neutrophil infiltration, and reactive oxygen species (ROS) generation within infarcted hearts in vivo in a mouse model of ischemia and reperfusion. The benefit of FK866 was not shown in the Langendorff model (ex vivo model of working heart without circulating leukocytes), suggesting a direct involvement of these cells in cardiac injury. Sera from FK866-treated mice showed reduced circulating levels of the neutrophil chemoattractant CXCL2 and impaired capacity to prime migration of these cells in vitro. The release of CXCL8 (human homolog of murine chemokine CXCL2) by human peripheral blood mononuclear cells (PBMCs) and Jurkat cells was also reduced by FK866, as well as by sirtuin (SIRT) inhibitors and SIRT6 silencing, implying a pivotal role for this NAD(+)-dependent deacetylase in the production of this chemokine. INNOVATION The pharmacological inhibition of Nampt might represent an effective approach to reduce neutrophilic inflammation- and oxidative stress-mediated tissue damage in early phases of reperfusion after a myocardial infarction. CONCLUSIONS Nampt inhibition appears as a new strategy to dampen CXCL2-induced neutrophil recruitment and thereby reduce neutrophil-mediated tissue injury in mice.


Current Pharmaceutical Design | 2012

Rejuvenating sirtuins: the rise of a new family of cancer drug targets.

Santina Bruzzone; Marco Daniele Parenti; Alessia Grozio; Alberto Ballestrero; Inga Bauer; Alberto Del Rio; Alessio Nencioni

Sirtuins are a family of NAD+-dependent enzymes that was proposed to control organismal life span about a decade ago. While such role of sirtuins is now debated, mounting evidence involves these enzymes in numerous physiological processes and disease conditions, including metabolism, nutritional behavior, circadian rhythm, but also inflammation and cancer. SIRT1, SIRT2, SIRT3, SIRT6, and SIRT7 have all been linked to carcinogenesis either as tumor suppressor or as cancer promoting proteins. Here, we review the biological rationale for the search of sirtuin inhibitors and activators for treating cancer and the experimental approaches to their identification.


Current Drug Targets | 2013

Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors as therapeutics: rationales, controversies, clinical experience

Fabrizio Montecucco; Michele Cea; Inga Bauer; Debora Soncini; Irene Caffa; Denise Lasigliè; Aimable Nahimana; Antonio Uccelli; Santina Bruzzone; Alessio Nencioni

Nicotinamide adenine dinucleotide (NAD+) biosynthesis from nicotinamide is used by mammalian cells to replenish their NAD+ stores and to avoid unwanted nicotinamide accumulation. Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), the key enzyme in this biosynthetic pathway, almost invariably leads to intracellular NAD+ depletion and, when protracted, to ATP shortage and cell demise. Cancer cells and activated immune cells express high levels of NAMPT and are highly susceptible to NAMPT inhibitors, as shown by the activity of these agents in models of malignant and inflammatory disorders. As the spectrum of conditions which could benefit from pharmacological NAMPT inhibition becomes broader, the mechanisms accounting for their activity are also eventually becoming apparent, including the induction of autophagy and the impairment of Ca2+--and NF-κB-dependent signaling. Here, we discuss the rationales for exploiting NAMPT inhibitors in cancer and inflammatory diseases and provide an overview of the preclinical and clinical studies in which these agents have been evaluated.


Journal of Biological Chemistry | 2012

NAD+ Levels Control Ca2+ Store Replenishment and Mitogen-induced Increase of Cytosolic Ca2+ by Cyclic ADP-ribose-dependent TRPM2 Channel Gating in Human T Lymphocytes

Mirko Magnone; Inga Bauer; Alessandro Poggi; Elena Mannino; Laura Sturla; Marisa Brini; Elena Zocchi; Antonio De Flora; Alessio Nencioni; Santina Bruzzone

Background: Intracellular NAD+ levels ([NAD+]i) regulate important cell functions. Results: Lowering the [NAD+]i decreases, and increasing [NAD+]i enhances replenishment of ER Ca2+ stores, mitogen-induced [Ca2+]i increase, and functional responses in T cells through gating of TRPM2 by CD38-generated ADPR. Conclusion: [NAD+]i regulates Ca2+ homeostasis and immune responses in T cells. Significance: Strategies aimed at increasing [NAD+]i in T lymphocytes can potentiate immune responses. Intracellular NAD+ levels ([NAD+]i) are important in regulating human T lymphocyte survival, cytokine secretion, and the capacity to respond to antigenic stimuli. NAD+-derived Ca2+-mobilizing second messengers, produced by CD38, play a pivotal role in T cell activation. Here we demonstrate that [NAD+]i modifications in T lymphocytes affect intracellular Ca2+ homeostasis both in terms of mitogen-induced [Ca2+]i increase and of endoplasmic reticulum Ca2+ store replenishment. Lowering [NAD+]i by FK866-mediated nicotinamide phosphoribosyltransferase inhibition decreased the mitogen-induced [Ca2+]i rise in Jurkat cells and in activated T lymphocytes. Accordingly, the Ca2+ content of thapsigargin-sensitive Ca2+ stores was greatly reduced in these cells in the presence of FK866. When NAD+ levels were increased by supplementing peripheral blood lymphocytes with the NAD+ precursors nicotinamide, nicotinic acid, or nicotinamide mononucleotide, the Ca2+ content of thapsigargin-sensitive Ca2+ stores as well as cell responsiveness to mitogens in terms of [Ca2+]i elevation were up-regulated. The use of specific siRNA showed that the changes of Ca2+ homeostasis induced by NAD+ precursors are mediated by CD38 and the consequent ADPR-mediated TRPM2 gating. Finally, the presence of NAD+ precursors up-regulated important T cell functions, such as proliferation and IL-2 release in response to mitogens.


Mediators of Inflammation | 2014

Statin Treatment Is Associated with Reduction in Serum Levels of Receptor Activator of NF-κB Ligand and Neutrophil Activation in Patients with Severe Carotid Stenosis

Sébastien Lenglet; Alessandra Quercioli; Mathias Fabre; Katia Galan; Graziano Pelli; Alessio Nencioni; Inga Bauer; Aldo Pende; Magaly Python; Maria Bertolotto; Giovanni Spinella; Bianca Pane; Domenico Palombo; Franco Dallegri; François Mach; Nicolas Vuilleumier; Fabrizio Montecucco

Systemic and intraplaque biomarkers have been widely investigated in clinical cohorts as promising surrogate parameters of cardiovascular vulnerability. In this pilot study, we investigated if systemic and intraplaque levels of calcification biomarkers were affected by treatment with a statin in a cohort of patients with severe carotid stenosis and being asymptomatic for ischemic stroke. Patients on statin therapy had reduced serum osteopontin (OPN), RANKL/osteoprotegerin (OPG) ratio, and MMP-9/pro-MMP-9 activity as compared to untreated patients. Statin-treated patients exhibited increased levels of collagen and reduced neutrophil infiltration in downstream portions of carotid plaques as compared to untreated controls. In upstream plaque portions, OPG content was increased in statin-treated patients as compared to controls. Other histological parameters (such as lipid, macrophage, smooth muscle cell, and MMP-9 content) as well as RANKL, RANK, and OPG mRNA levels did not differ between the two patient groups. Serum RANKL/OPG ratio positively correlated with serum levels of neutrophilic products, intraplaque neutrophil, and MMP-9 content within downstream portions of carotid plaques. In conclusion, statin treatment was associated with improvement in serum RANKL levels and reduced neutrophil activity both systemically and in atherosclerotic plaques.


European Journal of Medicinal Chemistry | 2015

Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics

Giovanna Sociali; Lauretta Galeno; Marco Daniele Parenti; Alessia Grozio; Inga Bauer; Mario Passalacqua; Silvia Boero; Alessandra Donadini; Enrico Millo; Marta Bellotti; Laura Sturla; Patrizia Damonte; Alessandra Puddu; Claudia Ferroni; Greta Varchi; Claudio Franceschi; Alberto Ballestrero; Alessandro Poggi; Santina Bruzzone; Alessio Nencioni; Alberto Del Rio

The NAD(+)-dependent sirtuin SIRT6 is highly expressed in human breast, prostate, and skin cancer where it mediates resistance to cytotoxic agents and prevents differentiation. Thus, SIRT6 is an attractive target for the development of new anticancer agents to be used alone or in combination with chemo- or radiotherapy. Here we report on the identification of novel quinazolinedione compounds with inhibitory activity on SIRT6. As predicted based on SIRT6s biological functions, the identified new SIRT6 inhibitors increase histone H3 lysine 9 acetylation, reduce TNF-α production and increase glucose uptake in cultured cells. In addition, these compounds exacerbate DNA damage and cell death in response to the PARP inhibitor olaparib in BRCA2-deficient Capan-1 cells and cooperate with gemcitabine to the killing of pancreatic cancer cells. In conclusion, new SIRT6 inhibitors with a quinazolinedione-based structure have been identified which are active in cells and could potentially find applications in cancer treatment.


Current Cancer Drug Targets | 2012

Role of Angiogenesis Inhibitors in Colorectal Cancer: Sensitive and Insensitive Tumors

L. Bagnasco; Daniela Piras; Silvio Parodi; Inga Bauer; Gabriele Zoppoli; Franco Patrone; Alberto Ballestrero

Angiogenesis is a key factor in the carcinogenesis process. In oncological practice, angiogenesis inhibition, mainly through the blockade of the VEGF family and its receptors, has been robustly demonstrated to produce clinical benefits and, in specific disease subsets such as colorectal cancer, to extend the overall survival of treated patients. VEGF is a multifunctional growth factor that mediates its functions through cognate receptors on endothelial cells and it has been discovered for its capability to induce macromolecule hyperpermeability in veins and venules. Several approaches have been taken to target angiogenesis in cancer: drugs that target one or more soluble ligands of the VEGF family, drugs that selectively inhibit one or more receptors of the VEGF receptor family, and drugs that inhibit VEGF receptor(s) among other, non VEGF-related targets. At present, two compounds have shown significant clinical activity, bevacizumab, Avastin® and aflibercept, Zaltrap®, and only one of these (bevacizumab) has so far been registered for use in clinical practice. In the present review, we explore and summarize the main features of the angiogenetic process, concerning in particular a common and potentially lethal disease as colorectal cancer. We overview the molecular pathways that characterize angiogenesis, focusing on VEGF family, the current applications and limitations of its blockade in oncology, and the hypothetical future perspectives of anti-angiogenic therapy.


Oncotarget | 2016

The GSK3β inhibitor BIS I reverts YAP-dependent EMT signature in PDAC cell lines by decreasing SMADs expression level

Natthakan Thongon; Ilaria Castiglioni; Chiara Zucal; Elisa Latorre; Vito Giuseppe D'Agostino; Inga Bauer; Michael Pancher; Alberto Ballestrero; Georg Feldmann; Alessio Nencioni; Alessandro Provenzani

The Yes-associated protein, YAP, is a transcriptional co-activator, mediating the Epithelial to Mesenchymal Transition program in pancreatic ductal adenocarcinoma (PDAC). With the aim to identify compounds that can specifically modulate YAP functionality in PDAC cell lines, we performed a small scale, drug-based screening experiment using YAP cell localization as the read-out. We identified erlotinib as an inducer of YAP cytoplasmic localization, an inhibitor of the TEA luciferase reporter system and the expression of the bona fide YAP target gene, Connective Tissue Growth Factor CTGF. On the other hand, BIS I, an inhibitor of PKCδ and GSK3β, caused YAP accumulation into the nucleus. Activation of β-catenin reporter and interfering experiments show that inhibition of the PKCδ/GSK3β pathway triggers YAP nuclear accumulation inducing YAP/TEAD transcriptional response. Inhibition of GSK3β by BIS I reduced the expression levels of SMADs protein and reduced YAP contribution to EMT. Notably, BIS I reduced proliferation, migration and clonogenicity of PDAC cells in vitro, phenocopying YAP genetic down-regulation. As shown by chromatin immunoprecipitation experiments and YAP over-expressing rescue experiments, BIS I reverted YAP-dependent EMT program by modulating the expression of the YAP target genes E-cadherin, vimentin, CTGF and of the newly identified target, CD133. In conclusion, we identified two different molecules, erlotinib and BIS I, modulating YAP functionality although via different mechanisms of action, with the second one specifically inhibiting the YAP-dependent EMT program in PDAC cell lines.


Bioorganic & Medicinal Chemistry | 2017

SIRT6 inhibitors with salicylate-like structure show immunosuppressive and chemosensitizing effects

Patrizia Damonte; Giovanna Sociali; Marco Daniele Parenti; Debora Soncini; Inga Bauer; Silvia Boero; Alessia Grozio; Maria von Holtey; Francesco Piacente; Pamela Becherini; Annalisa Salis; Gianluca Damonte; Michele Cea; Maximilien Murone; Alessandro Poggi; Alessio Nencioni; Alberto Del Rio; Santina Bruzzone

The NAD+-dependent deacetylase SIRT6 is an emerging cancer drug target, whose inhibition sensitizes cancer cells to chemo-radiotherapy and has pro-differentiating effects. Here we report on the identification of novel SIRT6 inhibitors with a salicylate-based structure. The new SIRT6 inhibitors show improved potency and specificity compared to the hit inhibitor identified in an in silico compound screen. As predicted based on SIRT6 biological roles, the new leads increase histone 3 lysine 9 acetylation and glucose uptake in cultured cells, while blocking TNF-α production and T lymphocyte proliferation. Notably, the new SIRT6 inhibitors effectively sensitize pancreatic cancer cells to gemcitabine. Finally, studies of compound fingerprinting and pharmacokinetics defined the drug-like properties of one of the new SIRT6 inhibitors, potentially allowing for subsequent in vivo proof-of-concept studies. In conclusion, new SIRT6 inhibitors with a salicylate-like structure were identified, which are active in cells and could potentially find applications in disease conditions, including cancer and immune-mediated disorders.

Collaboration


Dive into the Inga Bauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Poggi

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge