Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inga Grünewald is active.

Publication


Featured researches published by Inga Grünewald.


BMC Cancer | 2014

Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional Sanger sequencing for the detection of p.V600E and non-p.V600E BRAF mutations

Michaela Angelika Ihle; Jana Fassunke; Katharina König; Inga Grünewald; Max Schlaak; Nicole Kreuzberg; Lothar Tietze; Hans-Ulrich Schildhaus; Reinhard Büttner; Sabine Merkelbach-Bruse

BackgroundThe approval of vemurafenib in the US 2011 and in Europe 2012 improved the therapy of not resectable or metastatic melanoma. Patients carrying a substitution of valine to glutamic acid at codon 600 (p.V600E) or a substitution of valine to leucine (p.V600K) in BRAF show complete or partial response. Therefore, the precise identification of the underlying somatic mutations is essential. Herein, we evaluate the sensitivity, specificity and feasibility of six different methods for the detection of BRAF mutations.MethodsSamples harboring p.V600E mutations as well as rare mutations in BRAF exon 15 were compared to wildtype samples. DNA was extracted from formalin-fixed paraffin-embedded tissues by manual micro-dissection and automated extraction. BRAF mutational analysis was carried out by high resolution melting (HRM) analysis, pyrosequencing, allele specific PCR, next generation sequencing (NGS) and immunohistochemistry (IHC). All mutations were independently reassessed by Sanger sequencing. Due to the limited tumor tissue available different numbers of samples were analyzed with each method (82, 72, 60, 72, 49 and 82 respectively).ResultsThere was no difference in sensitivity between the HRM analysis and Sanger sequencing (98%). All mutations down to 6.6% allele frequency could be detected with 100% specificity. In contrast, pyrosequencing detected 100% of the mutations down to 5% allele frequency but exhibited only 90% specificity. The allele specific PCR failed to detect 16.3% of the mutations eligible for therapy with vemurafenib. NGS could analyze 100% of the cases with 100% specificity but exhibited 97.5% sensitivity. IHC showed once cross-reactivity with p.V600R but was a good amendment to HRM.ConclusionTherefore, at present, a combination of HRM and IHC is recommended to increase sensitivity and specificity for routine diagnostic to fulfill the European requirements concerning vemurafenib therapy of melanoma patients.


PLOS ONE | 2015

PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups

Lars Henning Schmidt; Andreas Kümmel; Dennis Görlich; Michael S. Mohr; Sebastian Bröckling; Jan Henrik Mikesch; Inga Grünewald; Alessandro Marra; Anne M. Schultheis; Eva Wardelmann; Carsten Müller-Tidow; Tilmann Spieker; Christoph Schliemann; Wolfgang E. Berdel; Rainer Wiewrodt; Wolfgang Hartmann

Background Immunotherapy can become a crucial therapeutic option to improve prognosis for lung cancer patients. First clinical trials with therapies targeting the programmed cell death receptor PD-1 and its ligand PD-L1 have shown promising results in several solid tumors. However, in lung cancer the diagnostic, prognostic and predictive value of these immunologic factors remains unclear. Method The impact of both factors was evaluated in a study collective of 321 clinically well-annotated patients with non-small lung cancer (NSCLC) using immunohistochemistry. Results PD-1 expression by tumor infiltrating lymphocytes (TILs) was found in 22%, whereas tumor cell associated PD-L1 expression was observed in 24% of the NSCLC tumors. In Fisher’s exact test a positive correlation was found for PD-L1 and Bcl-xl protein expression (p = 0.013). Interestingly, PD-L1 expression on tumor cells was associated with improved overall survival in pulmonary squamous cell carcinomas (SCC, p = 0.042, log rank test), with adjuvant therapy (p = 0.017), with increased tumor size (pT2-4, p = 0.039) and with positive lymph node status (pN1-3, p = 0.010). These observations were confirmed by multivariate cox regression models. Conclusion One major finding of our study is the identification of a prognostic implication of PD-L1 in subsets of NSCLC patients with pulmonary SCC, with increased tumor size, with a positive lymph node status and NSCLC patients who received adjuvant therapies. This study provides first data for immune-context related risk stratification of NSCLC patients. Further studies are necessary both to confirm this observation and to evaluate the predictive value of PD-1 and PD-L1 in NSCLC in the context of PD-1 inhibition.


Cancer immunology research | 2015

Targeting Interleukin-2 to the Bone Marrow Stroma for Therapy of Acute Myeloid Leukemia Relapsing after Allogeneic Hematopoietic Stem Cell Transplantation

Christoph Schliemann; Katrin L. Gutbrodt; Andrea Kerkhoff; Michele Pohlen; Stefanie Wiebe; Gerda Silling; Linus Angenendt; Torsten Kessler; Rolf M. Mesters; Leonardo Giovannoni; Michael Schäfers; Bianca Altvater; Claudia Rossig; Inga Grünewald; Eva Wardelmann; Gabriele Köhler; Dario Neri; Matthias Stelljes; Wolfgang E. Berdel

Schliemann and colleagues report the use of immunocytokine F16-IL2 in combination with low-dose cytarabine in four patients with relapsed AML after allogeneic hematopoietic stem-cell transplantation; antibody-mediated delivery of IL2 to the AML stroma can activate immune effector cells in the bone marrow of patients. The antibody-based delivery of IL2 to extracellular targets expressed in the easily accessible tumor-associated vasculature has shown potent antileukemic activity in xenograft and immunocompetent murine models of acute myelogenous leukemia (AML), especially in combination with cytarabine. Here, we report our experience with 4 patients with relapsed AML after allogeneic hematopoietic stem cell transplantation (allo-HSCT), who were treated with the immunocytokine F16-IL2, in combination with low-dose cytarabine. One patient with disseminated extramedullary AML lesions achieved a complete metabolic response identified by PET/CT, which lasted 3 months. Two of 3 patients with bone marrow relapse achieved a blast reduction with transient molecular negativity. One of the 2 patients enjoyed a short complete remission before AML relapse occurred 2 months after the first infusion of F16-IL2. In line with a site-directed delivery of the cytokine, F16-IL2 led to an extensive infiltration of immune effector cells in the bone marrow. Grade 2 fevers were the only nonhematologic side effects in 2 patients. Grade 3 cytokine-release syndrome developed in the other 2 patients but was manageable in both cases with glucocorticoids. The concept of specifically targeting IL2 to the leukemia-associated stroma deserves further evaluation in clinical trials, especially in patients who relapse after allo-HSCT. Cancer Immunol Res; 3(5); 547–56. ©2015 AACR.


Oncotarget | 2017

Expression of PSMA in tumor neovasculature of high grade sarcomas including synovial sarcoma, rhabdomyosarcoma, undifferentiated sarcoma and MPNST

Birthe Heitkötter; Marcel Trautmann; Inga Grünewald; Martin Bögemann; Kambiz Rahbar; Heidrun Gevensleben; Eva Wardelmann; Wolfgang Hartmann; Konrad Steinestel; Sebastian Huss

Aims PSMA (prostate specific membrane antigen) is physiologically expressed in normal prostate tissue. It is overexpressed in prostate cancer cells and has been suggested as a target for antibody-based radioligand therapy. As PSMA expression so far has not been systematically analyzed in soft tissue tumors, the current study aims at investigating a large cohort of different subtypes. Methods and Results Immunohistochemistry was used to detect PSMA expression in 779 samples of soft tissue tumors and Ewing sarcoma as a primary bone malignancy. CD34 coexpression was employed to study PSMA expression in the neovasculature. PSMA expression was found in the tumor-associated neovasculature of 151/779 soft tissue/bone tumors (19.38%) and was more frequent in malignant tumors compared to tumors with intermediate or benign biological potential (p=0.078). Strong neovascular PSMA expression was predominantly observed in subsets of different sarcomas including 3/20 rhabdomyosarcomas (15%), 4/21 malignant peripheral nerve sheath tumors (19.05%), 6/16 synovial sarcomas (35.29%) and 6/33 undifferentiated pleomorphic sarcomas (18.18%). Conclusion We conclude that PSMA is expressed in the neovasculature of a subset of soft tissue tumors to a variable extent. Our observation of strong PSMA expression predominantly occurring in sarcomas might provide a rationale to evaluate PSMA-targeted radioligand therapy in these entities.


Gastroenterology Research and Practice | 2015

Regulators of Actin Dynamics in Gastrointestinal Tract Tumors

Konrad Steinestel; Eva Wardelmann; Wolfgang Hartmann; Inga Grünewald

Reorganization of the actin cytoskeleton underlies cell migration in a wide variety of physiological and pathological processes, such as embryonic development, wound healing, and tumor cell invasion. It has been shown that actin assembly and disassembly are precisely regulated by intracellular signaling cascades that respond to changes in the cell microenvironment, ligand binding to surface receptors, or oncogenic transformation of the cell. Actin-nucleating and actin-depolymerizing (ANFs/ADFs) and nucleation-promoting factors (NPFs) regulate cytoskeletal dynamics at the leading edge of migrating cells, thereby modulating cell shape; these proteins facilitate cellular movement and mediate degradation of the surrounding extracellular matrix by secretion of lytic proteases, thus eliminating barriers for tumor cell invasion. Accordingly, expression and activity of these actin-binding proteins have been linked to enhanced metastasis and poor prognosis in a variety of malignancies. In this review, we will summarize what is known about expression patterns and the functional role of actin regulators in gastrointestinal tumors and evaluate first pharmacological approaches to prevent invasion and metastatic dissemination of malignant cells.


Journal of Trace Elements in Medicine and Biology | 2017

Spatial investigation of the elemental distribution in Wilson’s disease liver after d -penicillamine treatment by LA-ICP-MS

Oliver Hachmöller; Andree Zibert; Hans Zischka; Michael R. Sperling; Sara Reinartz Groba; Inga Grünewald; Eva Wardelmann; Hartmut Schmidt; Uwe Karst

At present, the copper chelator d-penicillamine (DPA) is the first-line therapy of Wilsons disease (WD), which is characterized by an excessive copper overload. Lifelong DPA treatments aim to reduce the amount of detrimental excess copper retention in the liver and other organs. Although DPA shows beneficial effect in many patients, it may cause severe adverse effects. Despite several years of copper chelation therapy, discontinuation of DPA therapy can be linked to a rapidly progressing liver failure, indicating a high residual liver copper load. In order to investigate the spatial distribution of remaining copper and additional elements, such as zinc and iron, in rat and human liver samples after DPA treatment, a high resolution (spotsize of 10μm) laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging method was applied. Untreated LPP-/- rats, an established animal model for WD, appeared with a high overall copper concentration and a copper distribution of hotspots distributed over the liver tissue. In contrast, a low (>2-fold decreased) overall copper concentration was detected in liver of DPA treated animals. Importantly, however, copper distribution was highly inhomogeneous with lowest concentrations in direct proximity to blood vessels, as observed using novel zonal analysis. A human liver needle biopsy of a DPA treated WD patient substantiated the finding of an inhomogeneous copper deposition upon chelation therapy. In contrast, comparatively homogenous distributions of zinc and iron were observed. Our study indicates that a high resolution LA-ICP-MS analysis of liver samples is excellently suited to follow efficacy of chelator therapy in WD patients.


Journal of Clinical Pathology | 2017

Prognostic relevance of epithelial–mesenchymal transition and proliferation in surgically treated primary parotid gland cancer

Alina Busch; Larissa Bauer; Eva Wardelmann; Claudia Rudack; Inga Grünewald; Markus Stenner

Aims Cancer of the major salivary glands comprises a morphologically diverse group of rare tumours of largely unknown cause. Epithelial–mesenchymal transition (EMT) has been shown to play a significant prognostic role in various human cancers. The aim was to assess the expression of EMT markers in different histological subtypes of parotid gland cancer (PGC) and analyse their prognostic value. Methods We examined 94 PGC samples (13 histological subtypes) for the expression of MIB-1, epithelial cadherin (E-cadherin), β-catenin, vimentin and cytokeratin 8/18 (CK8/18) by means of immunohistochemistry. The experimental findings were correlated with clinicopathological and survival parameters. Results We detected all analysed EMT and proliferation markers in specifically different constellations within the examined histological subtypes of PGC. We found high epithelial marker expressions (CK8/18, E-cadherin, membranous β-catenin) only in a distinct variety of carcinomas. A high proliferation rate (high MIB-1 expression) as well as a combination of high CK8/18 and low vimentin expression was associated with a significantly worse survival. Conclusions Our findings indicate that activation of the EMT pathway is a relevant explanation for tumour progression in individual histological subtypes of malignant parotid gland lesions, but by far not in all. Evidence of EMT activation in PGC cannot be seen as an isolated prognostic factor.


Oncotarget | 2016

MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas

Inga Grünewald; Marcel Trautmann; Alina Busch; Larissa Bauer; Sebastian Huss; Petra Schweinshaupt; Claudia Vollbrecht; Margarete Odenthal; Alexander Quaas; Reinhard Büttner; Moritz F. Meyer; Dirk Beutner; Karl-Bernd Hüttenbrink; Eva Wardelmann; Markus Stenner; Wolfgang Hartmann

Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs. 25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2. In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance.


Clinical Otolaryngology | 2017

Prediction of outcome by lymph node ratio in patients with parotid gland cancer

Moritz F. Meyer; Matthias Kreppel; Jeannine Meinrath; Inga Grünewald; Markus Stenner; Uta Drebber; Alexander Quaas; Margarete Odenthal; Robert Semrau; Christian U. Huebbers; Joachim E. Zöller; Karl-Bernd Huettenbrink; Reinhard Buettner; Dirk Beutner

Lymph node ratio (LNR) has been shown to be an independent predictor of recurrence risk and survival in different entities of carcinoma.


Clinical Cancer Research | 2017

FUS-DDIT3 fusion protein driven IGF-IR signaling is a therapeutic target in myxoid liposarcoma

Marcel Trautmann; Jasmin Menzel; Christian Bertling; Magdalene Cyra; Ilka Isfort; Konrad Steinestel; Sandra Elges; Inga Grünewald; Bianca Altvater; Claudia Rossig; Stefan Fröhling; Susanne Hafner; Thomas Simmet; Pierre Åman; Eva Wardelmann; Sebastian Huss; Wolfgang Hartmann

Purpose: Myxoid liposarcoma is an aggressive disease with particular propensity to develop hematogenic metastases. Over 90% of myxoid liposarcoma are characterized by a reciprocal t(12;16)(q13;p11) translocation. The resulting chimeric FUS–DDIT3 fusion protein plays a crucial role in myxoid liposarcoma pathogenesis; however, its specific impact on oncogenic signaling pathways remains to be substantiated. We here investigate the functional role of FUS–DDIT3 in IGF-IR/PI3K/Akt signaling driving myxoid liposarcoma pathogenesis. Experimental Design: Immunohistochemical evaluation of key effectors of the IGF-IR/PI3K/Akt signaling axis was performed in a comprehensive cohort of myxoid liposarcoma specimens. FUS–DDIT3 dependency and biological function of the IGF-IR/PI3K/Akt signaling cascade were analyzed using a HT1080 fibrosarcoma-based myxoid liposarcoma tumor model and multiple tumor–derived myxoid liposarcoma cell lines. An established myxoid liposarcoma avian chorioallantoic membrane model was used for in vivo confirmation of the preclinical in vitro results. Results: A comprehensive subset of myxoid liposarcoma specimens showed elevated expression and phosphorylation levels of various IGF-IR/PI3K/Akt signaling effectors. In HT1080 fibrosarcoma cells, overexpression of FUS-DDIT3 induced aberrant IGF-IR/PI3K/Akt pathway activity, which was dependent on transcriptional induction of the IGF2 gene. Conversely, RNAi-mediated FUS–DDIT3 knockdown in myxoid liposarcoma cells led to an inactivation of IGF-IR/PI3K/Akt signaling associated with diminished IGF2 mRNA expression. Treatment of myxoid liposarcoma cell lines with several IGF-IR inhibitors resulted in significant growth inhibition in vitro and in vivo. Conclusions: Our preclinical study substantiates the fundamental role of the IGF-IR/PI3K/Akt signaling pathway in myxoid liposarcoma pathogenesis and provides a mechanism-based rationale for molecular- targeted approaches in myxoid liposarcoma cancer therapy. Clin Cancer Res; 23(20); 6227–38. ©2017 AACR.

Collaboration


Dive into the Inga Grünewald's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Åman

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge