Ingrid H.C.H.M. Philippens
Biomedical Primate Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ingrid H.C.H.M. Philippens.
Sleep | 2011
Peternella S. Verhave; Marjan J. Jongsma; R. Van Den Berg; J.C. Vis; Raymond A.P. Vanwersch; August B. Smit; E.J.W. van Someren; Ingrid H.C.H.M. Philippens
STUDY OBJECTIVES Sleep problems are a common phenomenon in most neurological and psychiatric diseases. In Parkinson disease (PD), for instance, sleep problems may be the most common and burdensome non-motor symptoms in addition to the well-described classical motor symptoms. Since sleep disturbances generally become apparent in the disease before motor symptoms emerge, they may represent early diagnostic tools and a means to investigate early mechanisms in PD onset. The sleep disturbance, REM sleep behavior disorder (RBD), precedes PD in one-third of patients. We therefore investigated sleep changes in marmoset monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), the non-human primate model for idiopathic PD. DESIGN Mild parkinsonism was induced in 5 marmoset monkeys (3M/2F) over a 2-week period of subchronic MPTP treatment. Electroencephalograms (EEGs) and electromyograms (EMGs) were recorded weekly. Motor activity and hand-eye coordination were also measured weekly, and any signs of parkinsonism were noted each day. Sleep parameters, motor activity, and performance data before and after MPTP treatment were compared between MPTP-treated marmosets and 4 control marmosets (1M/3F). RESULTS MPTP increased the number of sleep epochs with high-amplitude EMG bouts during REM sleep relative to control animals (mean ± SEM percentage of REM 58.2 ± 9.3 vs. 29.6 ± 7.7; P < 0.05). Of all sleep parameters measured, RBD-like measures discriminated best between MPTP-treated and control animals. On the other hand, functional motor behavior, as measured by hand-eye coordination, was not affected by MPTP treatment (correct trials MPTP: 23.40 ± 3.56 vs. control: 36.13 ± 5.88 correct trials; P = 0.32). CONCLUSIONS This REM sleep-specific change, in the absence of profound changes in wake motor behaviors, suggests that the MPTP marmoset model of PD could be used for further studies into the mechanisms and treatment of RBD and other sleep disorders in premotor symptom PD.
Experimental Neurology | 2011
Michael W. Marlatt; Ingrid H.C.H.M. Philippens; Erik M. M. Manders; Boldizsár Czéh; Marian Joëls; Harm J. Krugers; Paul J. Lucassen
Adult neurogenesis in the primate brain is generally accepted to occur primarily in two specific areas; the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricles. Hippocampal neurogenesis is well known to be downregulated by stress and aging in rodents, however there is less evidence documenting the sensitivity of neuroblasts generated in the SVZ. In primates, migrating cells generated in the SVZ travel via a unique temporal stream (TS) to the amygdala and entorhinal cortex. Using adult common marmoset monkeys (Callithrix jacchus), we examined whether i) adult-generated cells in the marmoset amygdala differentiate into doublecortin-positive (DCX+) neuroblasts, and ii) whether lasting changes occur in DCX-expressing cells in the DG or amygdala when animals are exposed to 2 weeks of psychosocial stress. A surprisingly large population of DCX+ immature neurons was found in the amygdala of these 4-year-old monkeys with an average density of 163,000 DCX+ cells per mm(3). Co-labeling of these highly clustered cells with PSA-NCAM supports that a subpopulation of these cells are migratory and participate in chain-migration from the SVZ to the amygdala in middle-aged marmosets. Exposure to 2 weeks of isolation and social defeat stress failed to alter the numbers of BrdU+, or DCX+ cells in the hippocampus or amygdala when evaluated 2 weeks after psychosocial stress, indicating that the current stress paradigm has no long-term consequences on neurogenesis in this primate.
BioMed Research International | 2014
Bert A. 't Hart; Sjef Copray; Ingrid H.C.H.M. Philippens
Accumulating evidence suggests that inflammatory mediators secreted by activated resident or infiltrated innate immune cells have a significant impact on the pathogenesis of neurodegenerative diseases. This may imply that patients affected by a neurodegenerative disease may benefit from treatment with selective inhibitors of innate immune activity. Here we review the therapeutic potential of apocynin, an essentially nontoxic phenolic compound isolated from the medicinal plant Jatropha multifida. Apocynin is a selective inhibitor of the phagocyte NADPH oxidase Nox2 that can be applied orally and is remarkably effective at low dose.
Drug Discovery Today | 2014
Bert A. 't Hart; S. Anwar Jagessar; Yolanda S. Kap; Krista G. Haanstra; Ingrid H.C.H.M. Philippens; Che Serguera; J. A. M. Langermans; Michel Vierboom
The poor translational validity of autoimmune-mediated inflammatory disease (AIMID) models in inbred and specific pathogen-free (SPF) rodents underlies the high attrition of new treatments for the corresponding human disease. Experimental autoimmune encephalomyelitis (EAE) is a frequently used preclinical AIMID model. We discuss here how crucial information needed for the innovation of current preclinical models can be obtained from postclinical analysis of the nonhuman primate EAE model, highlighting the mechanistic reasons why some therapies fail and others succeed. These new insights can also help identify new targets for treatment.
Laboratory Animals | 2010
Martijn J.H. Agterberg; Marloes van den Broek; Ingrid H.C.H.M. Philippens
In the conventional shuttle box, animals are trained to avoid electric foot-shocks. As a consequence of these stress-inducing foot-shocks the animals become anxious and are difficult to train. The aim of the present study was to avoid the stress-inducing foot-shocks and to develop a fast and reliable conditioned avoidance behaviour task for guineapigs. We examined whether narrowband noises at four different sound levels above hearing threshold could be used as conditioned stimulus (CS). The unconditioned stimulus (UCS) was a stream of air, which was used instead of the conventionally used electric foot-shocks. The animals were initially trained with a CS of 78 dB sound pressure level (SPL). In this initial training, guineapigs learned to detect a narrowband noise of 78 dB SPL. Interestingly, during the first additional training session in which three other sound levels were applied, guineapigs did not immediately generalize the learned response at 78 dB SPL to lower sound levels of 58 and 68 dB SPL. However, in this session a noise level of 88 dB SPL led immediately to a high level of responses. The response latency decreased with increasing sound level, from ~7 s at 58 dB SPL to ~3 s at 88 dB SPL. The escape latency during the UCS was ~0.6 s. The present results demonstrate that after reducing the level of stress guineapigs can acquire a response in only a few sessions and furthermore, although the guineapigs were less anxious, training at sound levels of 78 and 88 dB SPL was influenced by an aversive reaction by the guineapig. The results indicate that this aversive reaction of the guineapig is crucial for the training.
The Journal of Experimental Biology | 2015
Rogier L.C. Plas; Hans Degens; J.P. (Peter) Meijer; G.M.J. de Wit; Ingrid H.C.H.M. Philippens; Maarten F. Bobbert; Richard T. Jaspers
ABSTRACT The muscle mass-specific mean power output (PMMS,mean) during push-off in jumping in marmosets (Callithrix jacchus) is more than twice that in humans. In the present study it was tested whether this is attributable to differences in muscle contractile properties. In biopsies of marmoset m. vastus lateralis (VL) and m. gastrocnemius medialis (GM) (N=4), fibre-type distribution was assessed using fluorescent immunohistochemistry. In single fibres from four marmoset and nine human VL biopsies, the force–velocity characteristics were determined. Marmoset VL contained almost exclusively fast muscle fibres (>99.0%), of which 63% were type IIB and 37% were hybrid fibres, fibres containing multiple myosin heavy chains. GM contained 9% type I fibres, 44% type IIB and 47% hybrid muscle fibres. The proportions of fast muscle fibres in marmoset VL and GM were substantially larger than those reported in the corresponding human muscles. The curvature of the force–velocity relationships of marmoset type IIB and hybrid fibres was substantially flatter than that of human type I, IIA, IIX and hybrid fibres, resulting in substantially higher muscle fibre mass-specific peak power (PFMS,peak). Muscle mass-specific peak power output (PMMS,peak) values of marmoset whole VL and GM, estimated from their fibre-type distributions and force–velocity characteristics, were more than twice the estimates for the corresponding human muscles. As the relative difference in estimated PMMS,peak between marmosets and humans is similar to that of PMMS,mean during push-off in jumping, it is likely that the difference in in vivo mechanical output between humans and marmosets is attributable to differences in muscle contractile properties. Summary: During jumping, the muscle mass-specific power of marmosets is more than twice that of humans. This difference in mechanical output in vivo is explained by differences in skeletal muscle contractile properties.
Neuroscience | 2016
S.K. Franke; R. E. Van Kesteren; Jacqueline Wubben; Sam Hofman; Iryna Paliukhovich; R.C. van der Schors; P. van Nierop; August B. Smit; Ingrid H.C.H.M. Philippens
Chronic exposure to low-dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in marmoset monkeys was used to model the prodromal stage of Parkinsons disease (PD), and to investigate mechanisms underlying disease progression and recovery. Marmosets were subcutaneously injected with MPTP for a period of 12weeks, 0.5mg/kg once per week, and clinical signs of Parkinsonism, motor- and non-motor behaviors were recorded before, during and after exposure. In addition, postmortem immunohistochemistry and proteomics analysis were performed. MPTP-induced parkinsonian clinical symptoms increased in severity during exposure, and recovered after MPTP administration was ended. Postmortem analyses, after the recovery period, revealed no alteration of the number and sizes of tyrosine hydroxylase (TH)-positive dopamine (DA) neurons in the substantia nigra. Also levels of TH in putamen and caudate nucleus were unaltered, no differences were observed in DA, serotonin or nor-adrenalin levels in the caudate nucleus, and proteomics analysis revealed no global changes in protein expression in these brain areas between treatment groups. Our findings indicate that parkinsonian symptoms can occur without detectable damage at the cellular or molecular level. Moreover, we show that parkinsonian symptoms may be reversible when diagnosed and treated early.
Neurodegenerative Diseases | 2016
Ronald E. van Kesteren; Sam Hofman; Jacqueline Wubben; August B. Smit; Ingrid H.C.H.M. Philippens
Introduction: Insight into susceptibility mechanisms underlying Parkinsons disease (PD) would aid the understanding of disease etiology, enable target finding and benefit the development of more refined disease-modifying strategies. Methods: We used intermittent low-dose MPTP (0.5 mg/kg/week) injections in marmosets and measured multiple behavioral and neurochemical parameters. Genetically diverse monkeys from different breeding families were selected to investigate inter- and intrafamily differences in susceptibility to MPTP treatment. Results: We show that such differences exist in clinical signs, in particular nonmotor PD-related behaviors, and that they are accompanied by differences in neurotransmitter levels. In line with the contribution of a genetic component, different susceptibility phenotypes could be traced back through genealogy to individuals of the different families. Conclusion: Our findings show that low-dose MPTP treatment in marmosets represents a clinically relevant PD model, with a window of opportunity to examine the onset of the disease, allowing the detection of individual variability in disease susceptibility, which may be of relevance for the diagnosis and treatment of PD in humans.
Toxicology Letters | 2011
H.P.M. van Helden; Marloes J.A. Joosen; Ingrid H.C.H.M. Philippens
The rapid onset of toxic signs following nerve agent intoxication and the apprehension that current therapy (atropine, oxime, diazepam) may not prevent brain damage, requires supportive pretreatment. Since the current pretreatment drug pyridostigmine fails in protecting brain-AChE, more effective pretreatment is necessary. A main focus of present-day pretreatment research is on bioscavengers, another is on centrally active reversible AChE-inhibitors combined with drugs showing anti-cholinergic, anti-glutamatergic, neuroprotective and non-sedating GABA-ergic activity. Strategies aimed at improving efficacy of pharmacological pretreatment will briefly be discussed. Galantamine, given as a pretreatment or stand-alone therapy, emerged as one of the best medical countermeasures against nerve agent poisoning in guinea pigs. Other preclinical studies demonstrated effective pretreatment consisting of physostigmine combined with procyclidine, scopolamine or bupropion (all single injections), against nerve agent poisoning in guinea pigs. A long sign-free pretreatment with physostigmine (Alzet pump), combined with single injection of procyclidine just before soman poisoning, enhanced the efficacy of a post-poisoning therapy consisting of 3 autoinjector equivalents of HI-6, atropine and diazepam, considerably.
Annals of clinical and translational neurology | 2017
Ingrid H.C.H.M. Philippens; Jacqueline Wubben; Raymond A.P. Vanwersch; Dave M. Lopes Estêvão; Peter A. Tass
Neurofeedback may enhance compensatory brain mechanisms. EEG‐based sensorimotor rhythm neurofeedback training was suggested to be beneficial in Parkinsons disease. In a placebo‐controlled study in parkinsonian nonhuman primates we here show that sensorimotor rhythm neurofeedback training reduces MPTP‐induced parkinsonian symptoms and both ON and OFF scores during classical L‐DOPA treatment. Our findings encourage further development of sensorimotor rhythm neurofeedback training as adjunct therapy for Parkinsons disease which might help reduce L‐DOPA‐induced side effects.