Ion Vornicu
University of Seville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ion Vornicu.
international semiconductor conference | 2014
Ion Vornicu; Ricardo Carmona-Galán; Ángel Rodríguez-Vázquez
The design and characterization of a CMOS 64×64 single-photon avalanche-diode (SPAD) array with in-pixel 11b time-to-digital converter (TDC) is presented. It is targeted for time-resolved imaging, in particular 3D imaging. The achieved pixel pitch is 64μm with a fill factor of 3.5%. The chip was fabricated in a 0.18μm standard CMOS technology and implements a double functionality: Time-of-Flight estimation and photon counting. The imager features a programmable time resolution for the array of TDCs from 625ps down to 145ps. The measured accuracy of the minimum time bin is lower than ±1LSB DNL and 1.7LSB INL. The TDC jitter over the full dynamic range is less than 1LSB. Die-to-die process variation and temperature are discarded by auto-calibration. Fast quenching/restore circuit on each pixel lowers the power consumption by limiting the avalanche currents. Time gatedoperation is possible as well.
international symposium on circuits and systems | 2016
Ion Vornicu; Ricardo Carmona-Galán; Ángel Rodríguez-Vázquez
The design and measurements of a CMOS pseudodifferential voltage-controlled ring-oscillator (VCRO) are presented. It is aimed to act as time interpolator for arrayable picosecond time-to-digital convertors (TDC). This design is incorporated into a 64×64 array of TDCs for time-of-flight (ToF) measurement. It has been fabricated in a 0.18μ™ standard CMOS technology. Small occupation area of 28×29μm2 and low average power consumption of 1.17mW at 850MHz are promising figures for this application field. Embedded phase alignment and instantaneous start-up time are required to minimize the offset of time interval measurements. The measured gain of the VCRO is of 477MHz/V with a frequency tuning range of 53%. Moreover it features a linearity of 99.4% over a wide range of control frequencies, namely from 400MHz to 850MHz. The phase noise is of 102dBc/Hz at 2MHz offset frequency from 850MHz.
international symposium on circuits and systems | 2015
Ion Vornicu; Ricardo Carmona-Galán; Ángel Rodríguez-Vázquez
The optical characterization of a CMOS 64×64 single-photon avalanche-diode (SPAD) array with in-pixel 11b time-to-digital converter (TDC) is presented. The overall full-width half-maximum (FWHM) of the detector ensemble SPAD plus TDC is 690ps. The sensor has been fabricated in a 0.18μm standard CMOS technology which features an average dark-count rate (DCR) of 42kHz at 1V excess voltage (Ve) and room temperature. The detector successfully uses its time-gating capability to mitigate this large amount of noise enabling the sensor for accurate time-of-flight (ToF) measurements. The effectiveness of the time-gating technique is experimentally demonstrated. According to measurements, a time window of 400ns is enough to ensure that the TDC is triggered by light rather than by spurious events.
international conference on electronics, circuits, and systems | 2014
Ion Vornicu; Ricardo Carmona-Galán; Ángel Rodríguez-Vázquez
Accurate generation of picosecond-resolution wide-range time intervals has become a necessity for the characterization of time-to-digital converters involved in time resolved imaging. This paper presents the design and measurement of a time interval generator based on FPGA technology. Although it can be employed in different automatic test setups, it has been designed to characterize an array of time-to-digital converters. It can work as periodic pulse/ frequency generator but also as a digital-to-time converter. The accuracy of periodic pulse generator is around 20ps RMS jitter over a time range of 600ps to 33ns. The incremental time resolution is 8ps and the repetition rate is up to 2MHz. The accuracy of the digital-to-time converter is less than 0.8LSB DNL and 2LSB INL, whilst the time resolution is 27ps. Full characterization of the module is reported including a comparison with state-of-the-art instruments in this field.
International Journal of Circuit Theory and Applications | 2016
Ion Vornicu; Ricardo Carmona-Galán; B. Perez-Verdu; Ángel Rodríguez-Vázquez
Summary Avalanche diodes operating in Geiger mode are able to detect single photon events. They can be employed to photon counting and time-of-flight estimation. In order to ensure proper operation of these devices, the avalanche current must be rapidly quenched, and, later on, the initial equilibrium must be restored. In this paper, we present an active quenching/recharge circuit specially designed to be integrated in the form of an array of single-photon avalanche diode (SPAD) detectors. Active quenching and recharge provide benefits like an accurately controllable pulse width and afterpulsing reduction. In addition, this circuit yields one of the lowest reported area occupations and power consumptions. The quenching mechanism employed is based on a positive feedback loop that accelerates quenching right after sensing the avalanche current. We have employed a current starved inverter for the regulation of the hold-off time, which is more compact than other reported controllable delay implementations. This circuit has been fabricated in a standard 0.18 µm complementary metal-oxide-semiconductor (CMOS) technology. The SPAD has a quasi-circular shape of 12 µm diameter active area. The fill factor is about 11%. The measured time resolution of the detector is 187 ps. The photon-detection efficiency (PDE) at 540 nm wavelength is about 5% at an excess voltage of 900 mV. The break-down voltage is 10.3 V. A dark count rate of 19 kHz is measured at room temperature. Worst case post-layout simulations show a 117 ps quenching and 280 ps restoring times. The dead time can be accurately tuned from 5 to 500 ns. The pulse-width jitter is below 1.8 ns when dead time is set to 40 ns. Copyright
international symposium on circuits and systems | 2013
Ion Vornicu; Ricardo Carmona-Galán; Ángel Rodríguez-Vázquez
The design and simulation of a CMOS 8 × 8 single photon avalanche diode (SPAD) array is presented. The chip has been fabricated in a 0.18μm standard CMOS technology and implements a double functionality: measuring the Time-of-Flight with the help of a pulsed light source; or computing focal-plane statistics in biomedical imaging applications based on a concentrated light-spot. The incorporation of on-chip processing simplifies the interfacing of the array with the host system. The pixel pitch is 32μm, while the diameter of the quasi-circular active area of the SPADs is 12μm. The 113μm2 active area is surrounded by a T-well guard ring. The resulting breakdown voltage is 10V with a maximum excess voltage of 1.8V. The pixel incorporates a novel active quenching/reset circuit. The array has been designed to operate with a laser pulsed at 20Mhz. The overall time resolution is 115ps. Focal-plane statistics are obtained in digital format. The maximum throughput of the digital output buffers is 200Mbps.
international symposium on circuits and systems | 2017
Ion Vornicu; Ricardo Carmona-Galán; Ángel Rodríguez-Vázquez
This paper presents a camera prototype for 2D/3D image capture in low illumination conditions based on single-photon avalanche-diode (SPAD) image sensor for direct time-offlight (d-ToF). The imager is a 64×64 array with in-pixel TDC for high frame rate acquisition. Circuit design techniques are combined to ensure successful 3D image capturing under low sensitivity conditions and high level of uncorrelated noise such as dark count and background illumination. Among them an innovative time gated front-end for the SPAD detector, a reverse start-stop scheme and real-time image reconstruction at Ikfps are incorporated by the imager. To the best of our knowledge, this is the first ToF camera based on a SPAD sensor fabricated and proved for 3D image reconstruction in a standard CMOS process without any opto-flavor or high voltage option. It has a depth resolution of 1cm at an illumination power from less than 6nW/mm2 down to 0.1nW/mm2.
Sensors | 2017
Ion Vornicu; Ricardo Carmona-Galán; Ángel Rodríguez-Vázquez
The design of a direct time-of-flight complementary metal-oxide-semiconductor (CMOS) image sensor (dToF-CIS) based on a single-photon avalanche-diode (SPAD) array with an in-pixel time-to-digital converter (TDC) must contemplate system-level aspects that affect its overall performance. This paper provides a detailed analysis of the impact of process parameters, voltage supply, and temperature (PVT) variations on the time bin of the TDC array. Moreover, the design and characterization of a global compensation loop is presented. It is based on a phase locked loop (PLL) that is integrated on-chip. The main building block of the PLL is a voltage-controlled ring-oscillator (VCRO) that is identical to the ones employed for the in-pixel TDCs. The reference voltage that drives the master VCRO is distributed to the voltage control inputs of the slave VCROs such that their multiphase outputs become invariant to PVT changes. These outputs act as time interpolators for the TDCs. Therefore the compensation scheme prevents the time bin of the TDCs from drifting over time due to the aforementioned factors. Moreover, the same scheme is used to program different time resolutions of the direct time-of-flight (ToF) imager aimed at 3D ranging or depth map imaging. Experimental results that validate the analysis are provided as well. The compensation loop proves to be remarkably effective. The spreading of the TDCs time bin is lowered from: (i) 20% down to 2.4% while the temperature ranges from 0 °C to 100 °C; (ii) 27% down to 0.27%, when the voltage supply changes within ±10% of the nominal value; (iii) 5.2 ps to 2 ps standard deviation over 30 sample chips, due to process parameters’ variation.
electronic imaging | 2015
Ion Vornicu; Ricardo Carmona-Galán; Ángel Rodríguez-Vázquez
The design and measurements of a CMOS 64 × 64 Single-Photon Avalanche-Diode (SPAD) array with in-pixel Time-to-Digital Converter (TDC) are presented. This paper thoroughly describes the imager at architectural and circuit level with particular emphasis on the characterization of the SPAD-detector ensemble. It is aimed to 2D imaging and 3D image reconstruction in low light environments. It has been fabricated in a standard 0.18μm CMOS process, i. e. without high voltage or low noise features. In these circumstances, we are facing a high number of dark counts and low photon detection efficiency. Several techniques have been applied to ensure proper functionality, namely: i) time-gated SPAD front-end with fast active-quenching/recharge circuit featuring tunable dead-time, ii) reverse start-stop scheme, iii) programmable time resolution of the TDC based on a novel pseudo-differential voltage controlled ring oscillator with fast start-up, iv) a global calibration scheme against temperature and process variation. Measurements results of individual SPAD-TDC ensemble jitter, array uniformity and time resolution programmability are also provided.
international symposium on circuits and systems | 2017
Ion Vornicu; Ricardo Carmona-Galán; Ángel Rodríguez-Vázquez
This demonstrator reveals the performance and features of a single photon avalanche diode (SPAD) camera prototype. It is aimed to 2D/3D vision by photon counting and direct time-of-flight (d-ToF), respectively. The imager is built on a standard CMOS technology without any opto flavor or high voltage option. The camera module consists of a 64×64 SPAD imager and a FPGA board for real time image reconstruction at 1kfps.