Irene E. Nagel
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irene E. Nagel.
Frontiers in Human Neuroscience | 2008
Irene E. Nagel; Christian Chicherio; Shu-Chen Li; Timo von Oertzen; Thomas Sander; Arno Villringer; Hauke R. Heekeren; Lars Bäckman; Ulman Lindenberger
We demonstrate that common genetic polymorphisms contribute to the increasing heterogeneity of cognitive functioning in old age. We assess two common Val/Met polymorphisms, one affecting the Catechol-O-Methyltransferase (COMT) enzyme, which degrades dopamine (DA) in prefrontal cortex (PFC), and the other influencing the brain-derived neurotrophic factor (BDNF) protein. In two tasks (Wisconsin Card Sorting and spatial working memory), we find that effects of COMT genotype on cognitive performance are magnified in old age and modulated by BDNF genotype. Older COMT Val homozygotes showed particularly low levels of performance if they were also BDNF Met carriers. The age-associated magnification of COMT gene effects provides novel information on the inverted U-shaped relation linking dopaminergic neuromodulation in PFC to cognitive performance. The modulation of COMT effects by BDNF extends recent evidence of close interactions between frontal and medial-temporal circuitries in executive functioning and working memory.
Frontiers in Neuroscience | 2008
Ulman Lindenberger; Irene E. Nagel; Christian Chicherio; Shu-Chen Li; Hauke R. Heekeren; Lars Bäckman
Individual differences in cognitive performance increase from early to late adulthood, likely reflecting influences of a multitude of factors. We hypothesize that losses in neurochemical and anatomical brain resources in normal aging modulate the effects of common genetic variations on cognitive functioning. Our hypothesis is based on the assumption that the function relating brain resources to cognition is nonlinear, so that genetic differences exert increasingly large effects on cognition as resources recede from high to medium levels in the course of aging. Direct empirical support for this hypothesis comes from a study by Nagel et al. (2008), who reported that the effects of the Catechol-O-Methyltransferase (COMT) gene on cognitive performance are magnified in old age and interacted with the Brain-Derived Neurotrophic Factor (BDNF) gene. We conclude that common genetic polymorphisms contribute to the increasing heterogeneity of cognitive functioning in old age. Extensions of the hypothesis to other polymorphisms are discussed. (150 of 150 words)
Proceedings of the National Academy of Sciences of the United States of America | 2009
Irene E. Nagel; Claudia Preuschhof; Shu-Chen Li; Lars Nyberg; Lars Bäckman; Ulman Lindenberger; Hauke R. Heekeren
Working memory (WM) shows pronounced age-related decline. Functional magnetic resonance imaging (fMRI) studies have revealed age differences in task-related brain activation. Evidence based primarily on episodic memory studies suggests that brain activation patterns can be modulated by task difficulty in both younger and older adults. In most fMRI aging studies on WM, however, performance level has not been considered, so that age differences in activation patterns are confounded with age differences in performance level. Here, we address this issue by comparing younger and older low and high performers in an event-related fMRI study. Thirty younger (20–30 years) and 30 older (60–70 years) healthy adults were tested with a spatial WM task with three load levels. A region-of-interest analysis revealed marked differences in the activation patterns between high and low performers in both age groups. Critically, among the older adults, a more “youth-like” load-dependent modulation of the blood oxygen level-dependent signal was associated with higher levels of spatial WM performance. These findings underscore the need of taking performance level into account when studying changes in functional brain activation patterns from early to late adulthood.
Journal of Cognitive Neuroscience | 2011
Irene E. Nagel; Claudia Preuschhof; Shu-Chen Li; Lars Nyberg; Lars Bäckman; Ulman Lindenberger; Hauke R. Heekeren
Individual differences in working memory (WM) performance have rarely been related to individual differences in the functional responsivity of the WM brain network. By neglecting person-to-person variation, comparisons of network activity between younger and older adults using functional imaging techniques often confound differences in activity with age trends in WM performance. Using functional magnetic resonance imaging, we investigated the relations among WM performance, neural activity in the WM network, and adult age using a parametric letter n-back task in 30 younger adults (21–31 years) and 30 older adults (60–71 years). Individual differences in the WM networks responsivity to increasing task difficulty were related to WM performance, with a more responsive BOLD signal predicting greater WM proficiency. Furthermore, individuals with higher WM performance showed greater change in connectivity between left dorsolateral prefrontal cortex and left premotor cortex across load. We conclude that a more responsive WM network contributes to higher WM performance, regardless of adult age. Our results support the notion that individual differences in WM performance are important to consider when studying the WM network, particularly in age-comparative studies.
NeuroImage | 2008
Irene E. Nagel; Eric H. Schumacher; Rainer Goebel; Mark D'Esposito
Response selection activates appropriate response representations to task-relevant environmental stimuli. Research implicates dorsolateral prefrontal cortex (dlPFC) for this process. On the other hand, studies of semantic selection, which activates verbal responses based on the semantic requirements of a task, implicate ventrolateral PFC (vlPFC). Despite this apparent dissociation, the neurocognitive distinction between response and semantic selection is controversial. The current functional MRI study attempts to resolve this controversy by investigating verbal response and semantic selection in the same participants. Participants responded vocally with a word to a visually presented noun, either from a memorized list of paired associates (response selection task), or by generating a semantically related verb (semantic selection task). We found a dissociation in left lateral PFC. Activation increased significantly in dlPFC with response selection difficulty, but not semantic selection difficulty. Conversely, semantic, but not response, selection difficulty increased activity significantly in vlPFC. Activity in left parietal cortex, on the other hand, was affected by difficulty increases in both selection tasks. These results suggest that response and semantic selection may be distinct cognitive processes mediated by different regions of lateral PFC; but both of these selection processes rely on cognitive mechanisms mediated by parietal cortex.
Human Brain Mapping | 2012
Agnieszka Z. Burzynska; Irene E. Nagel; Claudia Preuschhof; Sebastian Gluth; Lars Bäckman; Shu-Chen Li; Ulman Lindenberger; Hauke R. Heekeren
Executive functions that are dependent upon the frontal‐parietal network decline considerably during the course of normal aging. To delineate neuroanatomical correlates of age‐related executive impairment, we investigated the relation between cortical thickness and executive functioning in 73 younger (20–32 years) and 56 older (60–71 years) healthy adults. Executive functioning was assessed using the Wisconsin Card Sorting Test (WCST). Cortical thickness was measured at each location of the cortical mantle using surface‐based segmentation procedures on high‐resolution T1‐weighted magnetic resonance images. For regions involved in WCST performance, such as the lateral prefrontal and parietal cortices, we found that thicker cortex was related to higher accuracy. Follow‐up ROI‐based analyses revealed that these associations were stronger in older than in younger adults. Moreover, among older adults, high and low performers differed in cortical thickness within regions generally linked to WCST performance. Our results indicate that the structural cortical correlates of executive functioning largely overlap with previously identified functional patterns. We conclude that structural preservation of relevant brain regions is associated with higher levels of executive performance in old age, and underscore the need to consider the heterogeneity of brain aging in relation to cognitive functioning. Hum Brain Mapp, 2011.
Journal of Cognitive Neuroscience | 2010
Shu-Chen Li; Christian Chicherio; Lars Nyberg; Timo von Oertzen; Irene E. Nagel; Goran Papenberg; Thomas Sander; Hauke R. Heekeren; Ulman Lindenberger; Lars Bäckman
The brain-derived neurotrophic factor (BDNF) plays an important role in activity-dependent synaptic plasticity, which underlies learning and memory. In a sample of 948 younger and older adults, we investigated whether a common Val66Met missense polymorphism (rs6265) in the BDNF gene affects the serial position curve—a fundamental phenomenon of associative memory identified by Hermann Ebbinghaus more than a century ago. We found a BDNF polymorphism effect for backward recall in older adults only, with Met-allele carriers (i.e., individuals with reduced BDNF signaling) recalling fewer items than Val homozygotes. This effect was specific to the primacy and middle portions of the serial position curve, where intralist interference and associative demands are especially high. The poorer performance of older Met-allele carriers reflected transposition errors, whereas no genetic effect was found for omissions. These findings indicate that effects of the BDNF polymorphism on episodic memory are most likely to be observed when the associative and executive demands are high. Furthermore, the findings are in line with the hypothesis that the magnitude of genetic effects on cognition is greater when brain resources are reduced, as is the case in old age.
Cerebral Cortex | 2011
Agnieszka Z. Burzynska; Irene E. Nagel; Claudia Preuschhof; Shu-Chen Li; Ulman Lindenberger; Lars Bäckman; Hauke R. Heekeren
We investigated how the microstructure of relevant white matter connections is associated with cortical responsivity and working memory (WM) performance by collecting diffusion tensor imaging and verbal WM functional magnetic resonance imaging data from 29 young adults. We measured cortical responsivity within the frontoparietal WM network as the difference in blood oxygenation level-dependent (BOLD) signal between 3-back and 1-back conditions. Fractional anisotropy served as an index of the integrity of the superior longitudinal fasciculi (SLF), which connect frontal and posterior regions. We found that SLF integrity is associated with better 3-back performance and greater task-related BOLD responsivity. In addition, BOLD responsivity in right premotor cortex reliably mediated the effects of SLF integrity on 3-back performance but did not uniquely predict 3-back performance after controlling for individual differences in SLF integrity. Our results suggest that task-related adjustments of local gray matter processing are conditioned by the properties of anatomical connections between relevant cortical regions. We suggest that the microarchitecture of white matter tracts influences the speed of signal transduction along axons. This in turn may affect signal summation at neural dendrites, action potential firing, and the resulting BOLD signal change and responsivity.
The Journal of Neuroscience | 2013
Agnieszka Z. Burzynska; Douglas D. Garrett; Claudia Preuschhof; Irene E. Nagel; Shu-Chen Li; Lars Bäckman; Hauke R. Heekeren; Ulman Lindenberger
The comprehensive relations between healthy adult human brain white matter (WM) microstructure and gray matter (GM) function, and their joint relations to cognitive performance, remain poorly understood. We investigated these associations in 27 younger and 28 older healthy adults by linking diffusion tensor imaging (DTI) with functional magnetic resonance imaging (fMRI) data collected during an n-back working memory task. We present a novel application of multivariate Partial Least Squares (PLS) analysis that permitted the simultaneous modeling of relations between WM integrity values from all major WM tracts and patterns of condition-related BOLD signal across all GM regions. Our results indicate that greater microstructural integrity of the major WM tracts was negatively related to condition-related blood oxygenation level-dependent (BOLD) signal in task-positive GM regions. This negative relationship suggests that better quality of structural connections allows for more efficient use of task-related GM processing resources. Individuals with more intact WM further showed greater BOLD signal increases in typical “task-negative” regions during fixation, and notably exhibited a balanced magnitude of BOLD response across task-positive and -negative states. Structure—function relations also predicted task performance, including accuracy and speed of responding. Finally, structure–function–behavior relations reflected individual differences over and above chronological age. Our findings provide evidence for the role of WM microstructure as a scaffold for the context-relevant utilization of GM regions.
Neurobiology of Aging | 2013
Shu-Chen Li; Goran Papenberg; Irene E. Nagel; Claudia Preuschhof; Julia Schröder; Wilfried Nietfeld; Lars Bertram; Hauke R. Heekeren; Ulman Lindenberger; Lars Bäckman
Aging compromises dopamine transporter (DAT) and receptor mechanisms in the frontostriatal circuitry. In a sample of 1288 younger and older adults, we investigated (i) whether individual differences in genotypes of the DAT gene (i.e., SLC6A3, the DAT variable number of tandem repeat 9/9, 9/10, and 10/10) and in the D2 receptor (DRD2) gene (i.e., the C957T [rs6277] CC and any T) interactively contribute to phenotype variations in episodic memory performance; and (ii) whether these genetic effects are magnified in older adults, because of considerable declines in the dopamine functions. Our results showed that carrying genotypes associated with higher levels of striatal synaptic dopamine (DAT 9/9) and higher density of extrastriatal D2 receptors (C957T CC) were associated with better backward serial recall, an episodic memory task with high encoding and retrieval demands. Critically, the gene-gene interaction effect was reliably stronger in older than in younger adults. In line with the resource modulation hypothesis, our findings suggest that aging-related decline in brain phenotypes (e.g., dopamine functions) could alter the relations between genotypes and behavioral phenotypes (e.g., episodic memory).