Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina Rudeva is active.

Publication


Featured researches published by Irina Rudeva.


Bulletin of the American Meteorological Society | 2013

IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms

Urs Neu; M. G. Akperov; Nina Bellenbaum; Rasmu S. Benestad; Richard Blender; Rodrigo Caballero; Angela Cocozza; Helen F. Dacre; Yang Feng; Klaus Fraedrich; Jens Grieger; Sergey K. Gulev; John Hanley; Tim Hewson; Masaru Inatsu; Kevin Keay; Sarah F. Kew; Ina Kindem; Gregor C. Leckebusch; Margarida L. R. Liberato; Piero Lionello; I. I. Mokhov; Joaquim G. Pinto; Christoph C. Raible; Marco Reale; Irina Rudeva; Mareike Schuster; Ian Simmonds; Mark R. Sinclair; Michael Sprenger

The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of wea...


Bulletin of the American Meteorological Society | 2013

IMILAST – a community effort to intercompare extratropical cyclone detection and tracking algorithms: assessing method-related uncertainties.

Urs Neu; M. G. Akperov; Nina Bellenbaum; Rasmus Benestad; Richard Blender; Rodrigo Caballero; Angela Cocozza; Helen F. Dacre; Yang Feng; Klaus Fraedrich; Jens Grieger; Sergey K. Gulev; John Hanley; Tim Hewson; Masaru Inatsu; Kevin Keay; Sarah F. Kew; Ina Kindem; Gregor C. Leckebusch; Margarida L. R. Liberato; Piero Lionello; I. I. Mokhov; Joaquim G. Pinto; Christoph C. Raible; Marco Reale; Irina Rudeva; Mareike Schuster; Ian Simmonds; Mark R. Sinclair; Michael Sprenger

The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of wea...


Monthly Weather Review | 2007

Climatology of Cyclone Size Characteristics and Their Changes during the Cyclone Life Cycle

Irina Rudeva; Sergey K. Gulev

Abstract Climatology of the atmospheric cyclone sizes and their change over the cyclone life cycle is analyzed on the basis of tracking 57 yr of NCEP–NCAR reanalysis sea level pressure data over the Northern Hemisphere. To quantify the atmospheric cyclone sizes a coordinate transform was used, which allows for the collocation of the cyclone center with the virtual pole and for the establishment of a unique coordinate system for the further determination of cyclone geometry. This procedure was incorporated into a numerical cyclone tracking scheme and provided quantitative estimation of cyclone geometry at every stage of the cyclone development. Climatological features of the distribution of the cyclone size characteristics (effective radius, asymmetry) are considered for the cyclones with different central pressure, deepening rate, and lifetime. Mean effective cyclone radius may experience significant changes, ranging from 300–400 km over the continents to more than 900 km over the oceans. There is found t...


Journal of Climate | 2013

Comparing Cyclone Life Cycle Characteristics and Their Interannual Variability in Different Reanalyses

Natalia Tilinina; Sergey K. Gulev; Irina Rudeva; Peter Koltermann

AbstractCharacteristics of Northern Hemisphere extratropical cyclone activity were compared for five concurrent reanalyses: the NCEP–U.S. Department of Energy (DOE) reanalysis (herein NCEP–DOE), the Japanese 25-year Reanalysis Project (JRA-25), the ECMWF Interim Re-Analysis (ERA-Interim), the National Aeronautics and Space Administrations Modern-Era Retrospective Analysis for Research and Applications (NASA-MERRA), and the NCEP Climate Forecast System Reanalysis (NCEP-CFSR), for the period 1979–2010 using a single cyclone tracking algorithm. The total number of cyclones, ranging from 1400 to more than 1800 yr−1, was found to depend strongly on the spatial resolution of the respective reanalysis. The largest cyclone population was identified using NASA-MERRA data, which also showed the highest occurrence of very deep cyclones. Of the reanalyses, two (NCEP–DOE and ERA-Interim) are associated with statistically significant positive trends in the total number of cyclones from 1% to 2% decade−1. These trends ...


Monthly Weather Review | 2011

Composite Analysis of North Atlantic Extratropical Cyclones in NCEP–NCAR Reanalysis Data

Irina Rudeva; Sergey K. Gulev

AbstractComposite analysis of North Atlantic midlatitudinal winter cyclones is performed using NCEP–NCAR reanalysis data for the 60-yr period from 1948 to 2007. The composites were developed using an advanced methodology involving the coordinate transform of cyclones into a nondimensional azimuthal coordinate system and the further collocation of fields. Composite analysis is performed for air–sea turbulent fluxes, heat content, precipitable water, and precipitation for 576 oceanic cyclones generated in the Gulf Stream area in winter (January–March) from 1948 to 2007. For the region of cyclone generation over the Gulf Stream, composites were analyzed for different cyclone intensities. Over the whole North Atlantic, composites were developed throughout the life cycle and for different cyclone types classified by the regions of their migration. These classifications allow the case-to-case variability to be minimized and the robustness of the composite to be boosted. In the region of cyclone generation over ...


Meteorologische Zeitschrift | 2013

Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?

Uwe Ulbrich; Gregor C. Leckebusch; Jens Grieger; Mareike Schuster; M. G. Akperov; Mikhail Yu. Bardin; Yang Feng; Sergey K. Gulev; Masaru Inatsu; Kevin Keay; Sarah F. Kew; Margarida L. R. Liberato; Piero Lionello; I. I. Mokhov; Urs Neu; Joaquim G. Pinto; Christoph C. Raible; Marco Reale; Irina Rudeva; Ian Simmonds; Natalia Tilinina; Isabel F. Trigo; Sven Ulbrich; Xiaolan L. Wang; Heini Wernli

For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods.


Tellus A | 2014

A comparison of tracking methods for extreme cyclones in the Arctic basin

Ian Simmonds; Irina Rudeva

Dramatic climate changes have occurred in recent decades over the Arctic region, and very noticeably in near-surface warming and reductions in sea ice extent. In a climatological sense, Arctic cyclone behaviour is linked to the distributions of lower troposphere temperature and sea ice, and hence the monitoring of storms can be seen as an important component of the analysis of Arctic climate. The analysis of cyclone behaviour, however, is not without ambiguity, and different cyclone identification algorithms can lead to divergent conclusions. Here we analyse a subset of Arctic cyclones with 10 state-of-the-art cyclone identification schemes applied to the ERA-Interim reanalysis. The subset is comprised of the five most intense (defined in terms of central pressure) Arctic cyclones for each of the 12 calendar months over the 30-yr period from 1 January 1979 to 31 March 2009. There is a considerable difference between the central pressures diagnosed by the algorithms of typically 5–10 hPa. By contrast, there is substantial agreement as to the location of the centre of these extreme storms. The cyclone tracking algorithms also display some differences in the evolution and life cycle of these storms, while overall finding them to be quite long-lived. For all but six of the 60 storms an intense tropopause polar vortex is identified within 555 km of the surface system. The results presented here highlight some significant differences between the outputs of the algorithms, and hence point to the value using multiple identification schemes in the study of cyclone behaviour. Overall, however, the algorithms reached a very robust consensus on most aspects of the behaviour of these very extreme cyclones in the Arctic basin.


Journal of Climate | 2014

The Role of Extratropical Cyclones and Fronts for Southern Ocean Freshwater Fluxes

Lukas Papritz; Stephan Pfahl; Irina Rudeva; Ian Simmonds; Harald Sodemann; Heini Wernli

AbstractIn this study, the important role of extratropical cyclones and fronts for the atmospheric freshwater flux over the Southern Ocean is analyzed. Based on the Interim ECMWF Re-Analysis (ERA-Interim), the freshwater flux associated with cyclones is quantified and it is revealed that the structure of the Southern Hemispheric storm track is strongly imprinted on the climatological freshwater flux. In particular, during austral winter the spiraliform shape of the storm track leads to a band of negative freshwater flux bending toward and around Antarctica, complemented by a strong freshwater input into the midlatitude Pacific, associated with the split storm track. The interannual variability of the wintertime high-latitude freshwater flux is shown to be largely determined by the variability of strong precipitation (>75th percentile). Using a novel and comprehensive method to attribute strong precipitation uniquely to cyclones and fronts, it is demonstrated that over the Southern Ocean between 60% and 90...


Journal of Climate | 2015

Variability and Trends of Global Atmospheric Frontal Activity and Links with Large-Scale Modes of Variability

Irina Rudeva; Ian Simmonds

AbstractPresented here is a global analysis of frontal activity variability derived from ERA-Interim data over the 34-yr period of January 1979–March 2013 using a state-of-the-art frontal tracking scheme. In December–February over that epoch, there is a northward shift of frontal activity in the Pacific in the Northern Hemisphere (NH). In the Southern Hemisphere (SH), the largest trends are identified in the austral summer and are manifested by a southward shift of frontal activity over the Southern Ocean.Variability of frontal behavior is found to be closely related to the main modes of atmospheric circulation, such as the North Atlantic Oscillation (NAO) for the Atlantic–European sector in the NH and the southern annular mode (SAM) in the middle and high latitudes of the SH. A signal associated with El Nino and hence emanating from the tropics is also apparent in the behavior of frontal systems over the Pacific by a reduction in the number of fronts in the middle South Pacific and intensification of fro...


Tellus A | 2014

The sensitivity of characteristics of cyclone activity to identification procedures in tracking algorithms

Irina Rudeva; Sergey K. Gulev; Ian Simmonds; Natalia Tilinina

The IMILAST project (‘Intercomparison of Mid-Latitude Storm Diagnostics’) was set up to compare low-level cyclone climatologies derived from a number of objective identification algorithms. This paper is a contribution to that effort where we determine the sensitivity of three key aspects of Northern Hemisphere cyclone behaviour [namely the number of cyclones, their intensity (defined here in terms of the central pressure) and their deepening rates] to specific features in the automatic cyclone identification. The sensitivity is assessed with respect to three such features which may be thought to influence the ultimate climatology produced (namely performance in areas of complicated orography, time of the detection of a cyclone, and the representation of rapidly propagating cyclones). We make use of 13 tracking methods in this analysis. We find that the filtering of cyclones in regions where the topography exceeds 1500 m can significantly change the total number of cyclones detected by a scheme, but has little impact on the cyclone intensity distribution. More dramatically, late identification of cyclones (simulated by the truncation of the first 12 hours of cyclone life cycle) leads to a large reduction in cyclone numbers over the both continents and oceans (up to 80 and 40%, respectively). Finally, the potential splitting of the trajectories at times of the fastest propagation has a negligible climatological effect on geographical distribution of cyclone numbers. Overall, it has been found that the averaged deepening rates and averaged cyclone central pressure are rather insensitive to the specifics of the tracking procedure, being more sensitive to the data set used (as shown in previous studies) and the geographical location of a cyclone.

Collaboration


Dive into the Irina Rudeva's collaboration.

Top Co-Authors

Avatar

Ian Simmonds

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Sergey K. Gulev

Shirshov Institute of Oceanology

View shared research outputs
Top Co-Authors

Avatar

Kevin Keay

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Natalia Tilinina

Shirshov Institute of Oceanology

View shared research outputs
Top Co-Authors

Avatar

Jens Grieger

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. I. Mokhov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

M. G. Akperov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Joaquim G. Pinto

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge