Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Tilinina is active.

Publication


Featured researches published by Natalia Tilinina.


Bulletin of the American Meteorological Society | 2013

IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms

Urs Neu; M. G. Akperov; Nina Bellenbaum; Rasmu S. Benestad; Richard Blender; Rodrigo Caballero; Angela Cocozza; Helen F. Dacre; Yang Feng; Klaus Fraedrich; Jens Grieger; Sergey K. Gulev; John Hanley; Tim Hewson; Masaru Inatsu; Kevin Keay; Sarah F. Kew; Ina Kindem; Gregor C. Leckebusch; Margarida L. R. Liberato; Piero Lionello; I. I. Mokhov; Joaquim G. Pinto; Christoph C. Raible; Marco Reale; Irina Rudeva; Mareike Schuster; Ian Simmonds; Mark R. Sinclair; Michael Sprenger

The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of wea...


Bulletin of the American Meteorological Society | 2013

IMILAST – a community effort to intercompare extratropical cyclone detection and tracking algorithms: assessing method-related uncertainties.

Urs Neu; M. G. Akperov; Nina Bellenbaum; Rasmus Benestad; Richard Blender; Rodrigo Caballero; Angela Cocozza; Helen F. Dacre; Yang Feng; Klaus Fraedrich; Jens Grieger; Sergey K. Gulev; John Hanley; Tim Hewson; Masaru Inatsu; Kevin Keay; Sarah F. Kew; Ina Kindem; Gregor C. Leckebusch; Margarida L. R. Liberato; Piero Lionello; I. I. Mokhov; Joaquim G. Pinto; Christoph C. Raible; Marco Reale; Irina Rudeva; Mareike Schuster; Ian Simmonds; Mark R. Sinclair; Michael Sprenger

The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of wea...


Journal of Climate | 2013

Comparing Cyclone Life Cycle Characteristics and Their Interannual Variability in Different Reanalyses

Natalia Tilinina; Sergey K. Gulev; Irina Rudeva; Peter Koltermann

AbstractCharacteristics of Northern Hemisphere extratropical cyclone activity were compared for five concurrent reanalyses: the NCEP–U.S. Department of Energy (DOE) reanalysis (herein NCEP–DOE), the Japanese 25-year Reanalysis Project (JRA-25), the ECMWF Interim Re-Analysis (ERA-Interim), the National Aeronautics and Space Administrations Modern-Era Retrospective Analysis for Research and Applications (NASA-MERRA), and the NCEP Climate Forecast System Reanalysis (NCEP-CFSR), for the period 1979–2010 using a single cyclone tracking algorithm. The total number of cyclones, ranging from 1400 to more than 1800 yr−1, was found to depend strongly on the spatial resolution of the respective reanalysis. The largest cyclone population was identified using NASA-MERRA data, which also showed the highest occurrence of very deep cyclones. Of the reanalyses, two (NCEP–DOE and ERA-Interim) are associated with statistically significant positive trends in the total number of cyclones from 1% to 2% decade−1. These trends ...


Meteorologische Zeitschrift | 2013

Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?

Uwe Ulbrich; Gregor C. Leckebusch; Jens Grieger; Mareike Schuster; M. G. Akperov; Mikhail Yu. Bardin; Yang Feng; Sergey K. Gulev; Masaru Inatsu; Kevin Keay; Sarah F. Kew; Margarida L. R. Liberato; Piero Lionello; I. I. Mokhov; Urs Neu; Joaquim G. Pinto; Christoph C. Raible; Marco Reale; Irina Rudeva; Ian Simmonds; Natalia Tilinina; Isabel F. Trigo; Sven Ulbrich; Xiaolan L. Wang; Heini Wernli

For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods.


Geophysical Research Letters | 2014

New view of Arctic cyclone activity from the Arctic system reanalysis

Natalia Tilinina; Sergey K. Gulev; David H. Bromwich

Arctic cyclone activity is analyzed in 11 year (2000–2010), 3-hourly output from the Arctic System Reanalysis (ASR) interim version. Compared to the global modern era reanalyses (European Centre for Medium-Range Weather Forecasts Reanalysis (ERA)-Interim, Modern Era Retrospective Analysis for Research and Applications, and National Centers for Environmental Prediction-Climate Forecast System Reanalysis), ASR shows a considerably higher number of cyclones over the Arctic with the largest differences over the high-latitude continental areas (up to 40% in summer and 30% in winter). Over the Arctic Ocean during both seasons ASR captures well the cyclone maximum in the Eastern Arctic which has 30% less cyclones in summer and is hardly detectable in winter in ERA-Interim. High resolution of the ASR model coupled with more comprehensive data assimilation allows for more accurate (compared to the global reanalyses) description of the life cycle of the most intense Arctic cyclones, for which ASR shows lower central pressure (4 hPa on average), faster deepening, and stronger winds on average.


Geophysical Research Letters | 2014

Unexpected impacts of the Tropical Pacific array on reanalysis surface meteorology and heat fluxes

Simon A. Josey; Lisan Yu; Sergey K. Gulev; Xiangze Jin; Natalia Tilinina; Bernard Barnier; L. Brodeau

The Tropical Pacific mooring array has been a key component of the climate observing system since the early 1990s. We identify a pattern of strong near surface humidity anomalies, colocated with the array, in the widely used European Center for Medium Range Weather Forecasting Interim atmospheric reanalysis. The pattern generates large, previously unrecognized latent and net air-sea heat flux anomalies, up to 50 Wm−2 in the annual mean, in reanalysis derived data sets employed for climate studies (TropFlux) and ocean model forcing (the Drakkar Forcing Set). As a consequence, uncertainty in Tropical Pacific ocean heat uptake between the 1990s and early 2000s at the mooring sites is significant with mooring colocated differences in decadally averaged ocean heat uptake as large as 20 Wm−2. Furthermore, these results have major implications for the dual use of air-sea flux buoys as reference sites and sources of assimilation data that are discussed.


Tellus A | 2014

The sensitivity of characteristics of cyclone activity to identification procedures in tracking algorithms

Irina Rudeva; Sergey K. Gulev; Ian Simmonds; Natalia Tilinina

The IMILAST project (‘Intercomparison of Mid-Latitude Storm Diagnostics’) was set up to compare low-level cyclone climatologies derived from a number of objective identification algorithms. This paper is a contribution to that effort where we determine the sensitivity of three key aspects of Northern Hemisphere cyclone behaviour [namely the number of cyclones, their intensity (defined here in terms of the central pressure) and their deepening rates] to specific features in the automatic cyclone identification. The sensitivity is assessed with respect to three such features which may be thought to influence the ultimate climatology produced (namely performance in areas of complicated orography, time of the detection of a cyclone, and the representation of rapidly propagating cyclones). We make use of 13 tracking methods in this analysis. We find that the filtering of cyclones in regions where the topography exceeds 1500 m can significantly change the total number of cyclones detected by a scheme, but has little impact on the cyclone intensity distribution. More dramatically, late identification of cyclones (simulated by the truncation of the first 12 hours of cyclone life cycle) leads to a large reduction in cyclone numbers over the both continents and oceans (up to 80 and 40%, respectively). Finally, the potential splitting of the trajectories at times of the fastest propagation has a negligible climatological effect on geographical distribution of cyclone numbers. Overall, it has been found that the averaged deepening rates and averaged cyclone central pressure are rather insensitive to the specifics of the tracking procedure, being more sensitive to the data set used (as shown in previous studies) and the geographical location of a cyclone.


Scientific Reports | 2016

Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe.

Claudia D. Volosciuk; Douglas Maraun; Vladimir A. Semenov; Natalia Tilinina; Sergey K. Gulev; Mojib Latif

The beginning of the 21st century was marked by a number of severe summer floods in Central Europe associated with extreme precipitation (e.g., Elbe 2002, Oder 2010 and Danube 2013). Extratropical storms, known as Vb-cyclones, cause summer extreme precipitation events over Central Europe and can thus lead to such floodings. Vb-cyclones develop over the Mediterranean Sea, which itself strongly warmed during recent decades. Here we investigate the influence of increased Mediterranean Sea surface temperature (SST) on extreme precipitation events in Central Europe. To this end, we carry out atmosphere model simulations forced by average Mediterranean SSTs during 1970–1999 and 2000–2012. Extreme precipitation events occurring on average every 20 summers in the warmer-SST-simulation (2000–2012) amplify along the Vb-cyclone track compared to those in the colder-SST-simulation (1970–1999), on average by 17% in Central Europe. The largest increase is located southeast of maximum precipitation for both simulated heavy events and historical Vb-events. The responsible physical mechanism is increased evaporation from and enhanced atmospheric moisture content over the Mediterranean Sea. The excess in precipitable water is transported from the Mediterranean Sea to Central Europe causing stronger precipitation extremes over that region. Our findings suggest that Mediterranean Sea surface warming amplifies Central European precipitation extremes.


Journal of Climate | 2016

Seasonal Atmospheric Responses to Reduced Arctic Sea Ice in an Ensemble of Coupled Model Simulations

Tido Semmler; Lukrecia Stulic; Thomas Jung; Natalia Tilinina; Camila Campos; Sergey K. Gulev; Darko Koracin

AbstractArctic sea ice decline is expected to continue throughout the twenty-first century as a result of increased greenhouse gas concentrations. Here we investigate the impact of a strong Arctic sea ice decline on the atmospheric circulation and low pressure systems in the Northern Hemisphere through numerical experimentation with a coupled climate model. More specifically, a large ensemble of 1-yr-long integrations, initialized on 1 June with Arctic sea ice thickness artificially reduced by 80%, is compared to corresponding unperturbed control experiments. The sensitivity experiment shows an ice-free Arctic from July to October; during autumn the largest near-surface temperature increase of about 15 K is found in the central Arctic, which goes along with a reduced meridional temperature gradient, a decreased jet stream, and a southward shifted Northern Hemisphere storm track; and the near-surface temperature response in winter and spring reduces substantially due to relatively fast sea ice growth durin...


Geophysical Research Letters | 2017

Southern Ocean mesocyclones and polar lows from manually tracked satellite mosaics

Polina Verezemskaya; Natalia Tilinina; Sergey K. Gulev; Ian A. Renfrew; Matthew A. Lazzara

A new reference dataset of mesocyclone activity over the Southern Ocean has been developed from the manual analysis of high resolution infrared satellite mosaics for winter 2004. Of the total 1735 mesocyclones which were identified and analyzed about three quarters were classified as being ‘polar lows’ (i.e. intense systems; see Rasmussen and Turner 2003). The dataset includes mesocyclone track, size, associated cloud vortex type and background synoptic conditions. Maxima in track density were observed over the Bellingshausen Sea and around East Antarctica and are highly correlated with cyclogenesis regions. A comparison against QuikSCAT and reanalyses wind characteristics shows that the reanalyses, while capturing mesocyclone events, tend to considerably underestimate their wind speed (by up to 10 ms-1). This mesocyclone dataset is available as a reference for further analysis of mesocyclones and for the evaluation and development of cyclone-tracking algorithms.

Collaboration


Dive into the Natalia Tilinina's collaboration.

Top Co-Authors

Avatar

Sergey K. Gulev

Shirshov Institute of Oceanology

View shared research outputs
Top Co-Authors

Avatar

Irina Rudeva

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Ian Simmonds

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Kevin Keay

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

I. I. Mokhov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

M. G. Akperov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Grieger

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Joaquim G. Pinto

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge