Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina Shimeliovich is active.

Publication


Featured researches published by Irina Shimeliovich.


Journal of Experimental Medicine | 2011

Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans

Marina Caskey; François Lefebvre; Abdelali Filali-Mouhim; Mark J. Cameron; Jean-Philippe Goulet; Elias K. Haddad; Gaëlle Breton; Christine Trumpfheller; Sarah Pollak; Irina Shimeliovich; Angela Duque-Alarcon; Li Pan; Annette Nelkenbaum; Andres M. Salazar; Sarah J. Schlesinger; Ralph M. Steinman; Rafick Pierre Sekaly

As shown by transcriptional analysis of blood samples from human volunteers, injection with synthetic dsRNA (an agonist of the TLR3 and MDA5 pattern recognition receptors) triggered up-regulation of genes involved in innate immune pathways, similar to those induced by vaccination with the efficacious yellow fever vaccine.


Journal of Immunology | 2005

Dendritic Cell-Specific Intercellular Adhesion Molecule 3-Grabbing Nonintegrin/CD209 Is Abundant on Macrophages in the Normal Human Lymph Node and Is Not Required for Dendritic Cell Stimulation of the Mixed Leukocyte Reaction

Angela Granelli-Piperno; Alla Pritsker; Maggi Pack; Irina Shimeliovich; Jean-François Arrighi; Chae Gyu Park; Christine Trumpfheller; Vincent Piguet; Thomas M. Moran; Ralph M. Steinman

The C-type lectin dendritic cell-specific ICAM 3-grabbing nonintegrin (DC-SIGN)/CD209 efficiently binds several pathogens, including HIV-1. DC-SIGN is expressed on monocyte-derived DCs in culture, and importantly, it is able to sequester HIV-1 within cells and facilitate transmission of virus to CD4+ T cells. To investigate DC-SIGN function, we have generated new mAbs. We report in this study that these and prior anti-DC-SIGN mAbs primarily label macrophages in the medullary sinuses of noninflamed human lymph node. In contrast, expression is not detected on most DCs in the T cell area, except for occasional cells. We also noted that IL-4 alone can induce expression of DC-SIGN in CD14+ monocytes and circulating blood DCs. However, blockade of DC-SIGN with Abs and DC-SIGN small interfering RNA did not result in a major reduction in the capacity of these DCs to transfer HIV to T cells, confirming significant DC-SIGN-independent mechanisms. The blocking approaches did reduce HIV-1 transmission by DC-SIGN-transfected cells by >90%. DC-SIGN blockade also did not reduce the ability of DCs to stimulate T cell proliferation in the MLR. These results indicate that DC-SIGN has the potential to contribute to macrophage function in normal human lymph node, and that DCs do not require DC-SIGN to transmit HIV or to initiate T cell responses.


Nature | 2016

HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption

Johannes F. Scheid; Joshua A. Horwitz; Yotam Bar-On; Edward F. Kreider; Ching Lan Lu; Julio C. C. Lorenzi; Anna Feldmann; Malte Braunschweig; Lilian Nogueira; Thiago Y. Oliveira; Irina Shimeliovich; Roshni Patel; Leah A. Burke; Yehuda Z. Cohen; Sonya Hadrigan; Allison Settler; Maggi Witmer-Pack; Anthony P. West; Boris Juelg; Tibor Keler; Thomas Hawthorne; Barry Zingman; Roy M. Gulick; Nico Pfeifer; Gerald H. Learn; Michael S. Seaman; Pamela J. Bjorkman; Florian Klein; Sarah J. Schlesinger; Bruce D. Walker

Interruption of combination antiretroviral therapy (ART) in HIV-1-infected individuals leads to rapid viral rebound. Here we report the results of a phase IIa open label clinical trial evaluating 3BNC117, a broad and potent neutralizing antibody (bNAb) against the CD4 binding site of HIV-1 Env, in the setting of analytical treatment interruption (ATI) in 13 HIV-1-infected individuals. Participants with 3BNC117-sensitive virus outgrowth cultures were enrolled. Two or four 30 mg/kg infusions of 3BNC117, separated by 3 or 2 weeks, respectively, were generally well tolerated. The infusions were associated with a delay in viral rebound for 5-9 weeks after 2 infusions, and up to 19 weeks after 4 infusions, or an average of 6.7 and 9.9 weeks respectively, compared with 2.6 weeks for historical controls (p=<1e-5). Rebound viruses arose predominantly from a single provirus. In most individuals, emerging viruses showed increased resistance indicating escape. However, 30% of participants remained suppressed until antibody concentrations waned below 20 μg/ml, and the viruses emerging in all but one of these individuals showed no apparent resistance to 3BCN117, suggesting failure to escape over a period of 9-19 weeks. We conclude that administration of 3BNC117 exerts strong selective pressure on HIV-1 emerging from latent reservoirs during ATI in humans.


Nature Medicine | 2017

Antibody 10-1074 suppresses viremia in HIV-1-infected individuals

Marina Caskey; Till Schoofs; Henning Gruell; Allison Settler; Theodora Karagounis; Edward F. Kreider; Ben Murrell; Nico Pfeifer; Lilian Nogueira; Thiago Y. Oliveira; Gerald H. Learn; Yehuda Z. Cohen; Clara Lehmann; Daniel Gillor; Irina Shimeliovich; Cecilia Unson-O'Brien; Daniela Weiland; Alexander Robles; Tim Kümmerle; Christoph Wyen; Rebeka Levin; Maggi Witmer-Pack; Kemal Eren; Caroline C. Ignacio; Szilard Kiss; Anthony P. West; Hugo Mouquet; Barry Zingman; Roy M. Gulick; Tibor Keler

Monoclonal antibody 10-1074 targets the V3 glycan supersite on the HIV-1 envelope (Env) protein. It is among the most potent anti-HIV-1 neutralizing antibodies isolated so far. Here we report on its safety and activity in 33 individuals who received a single intravenous infusion of the antibody. 10-1074 was well tolerated and had a half-life of 24.0 d in participants without HIV-1 infection and 12.8 d in individuals with HIV-1 infection. Thirteen individuals with viremia received the highest dose of 30 mg/kg 10-1074. Eleven of these participants were 10-1074-sensitive and showed a rapid decline in viremia by a mean of 1.52 log10 copies/ml. Virologic analysis revealed the emergence of multiple independent 10-1074-resistant viruses in the first weeks after infusion. Emerging escape variants were generally resistant to the related V3-specific antibody PGT121, but remained sensitive to antibodies targeting nonoverlapping epitopes, such as the anti-CD4-binding-site antibodies 3BNC117 and VRC01. The results demonstrate the safety and activity of 10-1074 in humans and support the idea that antibodies targeting the V3 glycan supersite might be useful for the treatment and prevention of HIV-1 infection.


Journal of Immunology | 2006

HIV-1 Selectively Infects a Subset of Nonmaturing BDCA1-Positive Dendritic Cells in Human Blood

Angela Granelli-Piperno; Irina Shimeliovich; Maggi Pack; Christine Trumpfheller; Ralph M. Steinman

The infection of cultured monocyte-derived dendritic cells (DCs) with HIV-1 involves CD4 and CCR5 receptors, while transmission to T cells is enhanced at least in part by the lectin DC-SIGN/CD209. In the present study, we studied BDCA-1+ myeloid DCs isolated directly from human blood. These cells express CD4 and low levels of CCR5 and CXCR4 coreceptors, but not DC-SIGN. The myeloid DCs replicate two R5 viruses, BaL and YU2, and transfer infection to activated T cells. The virus productively infects a small fraction of the blood DCs that fail to mature in culture, as indicated by the maturation markers CD83 and DC-LAMP/CD208, and the expression of high CD86 and MHC class II, in contrast to many noninfected DCs. A greater proportion of BDCA-1+ DCs are infected when the virus is pseudotyped with the vesicular stomatitis envelope VSV-G (5–15%), as compared with the R5 virus (0.3–3.5%), indicating that HIV-1 coreceptors may limit the susceptibility of DCs to become infected, or the endocytic route of viral entry used by HIV/vesicular stomatitis virus enhances infectivity. When infected and noninfected cells are purified by cell sorting, the former uniformly express HIV p24 gag and are virtually inactive as stimulators of the allogeneic MLR, in contrast to potent stimulation by noninfected DCs from the same cultures. These results point to two roles for a small fraction of blood DCs in HIV-1 pathogenesis: to support productive infection and to evade the direct induction of T cell-mediated immunity.


European Journal of Immunology | 2009

HIV gag protein is efficiently cross-presented when targeted with an antibody towards the DEC-205 receptor in Flt3 ligand-mobilized murine DC.

Leonia Bozzacco; Christine Trumpfheller; Yaoxing Huang; Maria Paula Longhi; Irina Shimeliovich; Joseph D. Schauer; Chae Gyu Park; Ralph M. Steinman

DC present exogenous proteins to MHC class I‐restricted CD8+ T cells. This function does not require endogenous antigen synthesis within DC, providing the potential to elicit CD8+ T‐cell responses to immune complexes, inactivated microbes, dying cells, and proteins such as OVA. In mice, the CD8+ or DEC‐205+ DC are specialized for cross‐presentation, and this subset can be increased 10‐fold in numbers following Fms‐like tyrosine kinase 3 ligand (Flt3L) treatment in vivo. Therefore, we studied cross‐presentation by abundant Flt3L DC using HIV gag protein. When enriched by positive selection with anti‐CD11c beads, cells from Flt3L mice are not only more abundant but are also more highly enriched in CD11chigh DC, particularly the DEC‐205+ subset. DC cross‐present HIV gag to primed CD8+ T cells, but when the antigen is delivered within an antibody to DEC‐205 receptor, cross‐presentation becomes 100‐fold more efficient than non‐targeted antigen. This finding requires gag to be engineered into anti‐DEC antibody, not just mixed with antibody. Flt3L DC are a valuable tool to study cross‐presentation, since their use overcomes the obstacle posed by the low number of cross‐presenting DC in the steady state. These findings support future experiments to use Flt3L to enhance presentation of DC‐targeted vaccines.


Journal of Virology | 2017

Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Clade B Clinical Isolates Produced in Peripheral Blood Mononuclear Cells

Yehuda Z. Cohen; Julio C. C. Lorenzi; Michael S. Seaman; Lilian Nogueira; Till Schoofs; Lisa Krassnig; Allison L. Butler; Katrina Millard; Tomas Fitzsimons; Xiaoju G. Daniell; Juan P. Dizon; Irina Shimeliovich; David C. Montefiori; Marina Caskey; Michel C. Nussenzweig

ABSTRACT Recently discovered broadly neutralizing antibodies (bNAbs) against HIV-1 demonstrate extensive breadth and potency against diverse HIV-1 strains and represent a promising approach for the treatment and prevention of HIV-1 infection. The breadth and potency of these antibodies have primarily been evaluated by using panels of HIV-1 Env-pseudotyped viruses produced in 293T cells expressing molecularly cloned Env proteins. Here we report on the ability of five bNAbs currently in clinical development to neutralize circulating primary HIV-1 isolates derived from peripheral blood mononuclear cells (PBMCs) and compare the results to those obtained with the pseudovirus panels used to characterize the bNAbs. The five bNAbs demonstrated significantly less breadth and potency against clinical isolates produced in PBMCs than against Env-pseudotyped viruses. The magnitude of this difference in neutralizing activity varied, depending on the antibody epitope. Glycan-targeting antibodies showed differences of only 3- to 4-fold, while antibody 10E8, which targets the membrane-proximal external region, showed a nearly 100-fold decrease in activity between published Env-pseudotyped virus panels and PBMC-derived primary isolates. Utilizing clonal PBMC-derived primary isolates and molecular clones, we determined that the observed discrepancy in bNAb performance is due to the increased sensitivity to neutralization exhibited by 293T-produced Env-pseudotyped viruses. We also found that while full-length molecularly cloned viruses produced in 293T cells exhibit greater sensitivity to neutralization than PBMC-derived viruses do, Env-pseudotyped viruses produced in 293T cells generally exhibit even greater sensitivity to neutralization. As the clinical development of bNAbs progresses, it will be critical to determine the relevance of each of these in vitro neutralization assays to in vivo antibody performance. IMPORTANCE Novel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Antibodies with exceptional neutralizing activity against HIV-1 may provide several advantages to traditional HIV drugs, including an improved side-effect profile, a reduced dosing frequency, and immune enhancement. The activity of these antibodies has been established in vitro by utilizing HIV-1 Env-pseudotyped viruses derived from circulating viruses but produced in 293T cells by pairing Env proteins with a backbone vector. We tested PBMC-produced circulating viruses against five anti-HIV-1 antibodies currently in clinical development. We found that the activity of these antibodies against PBMC isolates is significantly less than that against 293T Env-pseudotyped viruses. This decline varied among the antibodies tested, with some demonstrating moderate reductions in activity and others showing an almost 100-fold reduction. As the development of these antibodies progresses, it will be critical to determine how the results of different in vitro tests correspond to performance in the clinic.


Journal of Experimental Medicine | 2018

Relationship between latent and rebound viruses in a clinical trial of anti–HIV-1 antibody 3BNC117

Yehuda Z. Cohen; Julio C. C. Lorenzi; Lisa Krassnig; John P. Barton; Leah A. Burke; Joy Pai; Ching-Lan Lu; Pilar Mendoza; Thiago Y. Oliveira; Christopher Sleckman; Katrina Millard; Allison L. Butler; Juan P. Dizon; Shiraz Belblidia; Maggi Witmer-Pack; Irina Shimeliovich; Roy M. Gulick; Michael S. Seaman; Mila Jankovic; Marina Caskey; Michel C. Nussenzweig

A clinical trial was performed to evaluate 3BNC117, a potent anti–HIV-1 antibody, in infected individuals during suppressive antiretroviral therapy and subsequent analytical treatment interruption (ATI). The circulating reservoir was evaluated by quantitative and qualitative viral outgrowth assay (Q2VOA) at entry and after 6 mo. There were no significant quantitative changes in the size of the reservoir before ATI, and the composition of circulating reservoir clones varied in a manner that did not correlate with 3BNC117 sensitivity. 3BNC117 binding site amino acid variants found in rebound viruses preexisted in the latent reservoir. However, only 3 of 217 rebound viruses were identical to 868 latent viruses isolated by Q2VOA and near full-length sequencing. Instead, 63% of the rebound viruses appeared to be recombinants, even in individuals with 3BNC117-resistant reservoir viruses. In conclusion, viruses emerging during ATI in individuals treated with 3BNC117 are not the dominant species found in the circulating latent reservoir, but frequently appear to represent recombinants of latent viruses.


Nature | 2016

Corrigendum: Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117

Marina Caskey; Florian Klein; Julio C. C. Lorenzi; Michael S. Seaman; Anthony P. West; Noreen Buckley; Gisela Kremer; Lilian Nogueira; Malte Braunschweig; Johannes F. Scheid; Joshua A. Horwitz; Irina Shimeliovich; Sivan Ben-Avraham; Maggi Witmer-Pack; Martin Platten; Clara Lehmann; Leah A. Burke; Thomas Hawthorne; Robert J. Gorelick; Bruce D. Walker; Tibor Keler; Roy M. Gulick; Gerd Fätkenheuer; Sarah J. Schlesinger; Michel C. Nussenzweig

This corrects the article DOI: 10.1038/nature14411


Nature Medicine | 2018

Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals

Yotam Bar-On; Henning Gruell; Till Schoofs; Joy Pai; Lilian Nogueira; Allison L. Butler; Katrina Millard; Clara Lehmann; Isabelle Suárez; Thiago Y. Oliveira; Theodora Karagounis; Yehuda Z. Cohen; Christoph Wyen; Stefan Scholten; Lisa Handl; Shiraz Belblidia; Juan P. Dizon; Jörg J. Vehreschild; Maggi Witmer-Pack; Irina Shimeliovich; Kanika Jain; Kerstin Fiddike; Kelly E. Seaton; Nicole L. Yates; Jill Horowitz; Roy M. Gulick; Nico Pfeifer; Georgia D. Tomaras; Michael S. Seaman; Gerd Fätkenheuer

Monotherapy of HIV-1 infection with single antiretroviral agents is ineffective because error-prone HIV-1 replication leads to the production of drug-resistant viral variants1,2. Combinations of drugs can establish long-term control, however, antiretroviral therapy (ART) requires daily dosing, can cause side effects and does not eradicate the infection3,4. Although anti-HIV-1 antibodies constitute a potential alternative to ART5,6, treatment of viremic individuals with a single antibody also results in emergence of resistant viral variants7–9. Moreover, combinations of first-generation anti-HIV-1 broadly neutralizing antibodies (bNAbs) had little measurable effect on the infection10–12. Here we report on a phase 1b clinical trial (NCT02825797) in which two potent bNAbs, 3BNC11713 and 10-107414, were administered in combination to seven HIV-1 viremic individuals. Infusions of 30 mg kg−1 of each of the antibodies were well-tolerated. In the four individuals with dual antibody-sensitive viruses, immunotherapy resulted in an average reduction in HIV-1 viral load of 2.05 log10 copies per ml that remained significantly reduced for three months following the first of up to three infusions. In addition, none of these individuals developed resistance to both antibodies. Larger studies will be necessary to confirm the efficacy of antibody combinations in reducing HIV-1 viremia and limiting the emergence of resistant viral variants.Combination of two broadly neutralizing antibodies is effective in reducing HIV-1 viremia and in limiting the emergence of resistant viral variants in individuals harboring antibody-sensitive viruses.

Collaboration


Dive into the Irina Shimeliovich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Seaman

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony P. West

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge