Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabel Marzo is active.

Publication


Featured researches published by Isabel Marzo.


Nature | 1999

Molecular characterization of mitochondrial apoptosis-inducing factor

Santos A. Susin; Hans K. Lorenzo; Naoufal Zamzami; Isabel Marzo; Bryan E. Snow; Joan Mangion; Etienne Jacotot; Paola Costantini; Markus Loeffler; Nathanael Larochette; David R. Goodlett; Ruedi Aebersold; David P. Siderovski; Josef M. Penninger; Guido Kroemer

Mitochondria play a key part in the regulation of apoptosis (cell death). Their intermembrane space contains several proteins that are liberated through the outer membrane in order to participate in the degradation phase of apoptosis. Here we report the identification and cloning of an apoptosis-inducing factor, AIF, which is sufficient to induce apoptosis of isolated nuclei. AIF is a flavoprotein of relative molecular mass 57,000 which shares homology with the bacterial oxidoreductases; it is normally confined to mitochondria but translocates to the nucleus when apoptosis is induced. Recombinant AIF causes chromatin condensation in isolated nuclei and large-scale fragmentation of DNA. It induces purified mitochondria to release the apoptogenic proteins cytochrome c and caspase-9. Microinjection of AIF into the cytoplasm of intact cells induces condensation of chromatin, dissipation of the mitochondrial transmembrane potential, and exposure of phosphatidylserine in the plasma membrane. None of these effects is prevented by the wide-ranging caspase inhibitor known as Z-VAD.fmk. Overexpression of Bcl-2, which controls the opening of mitochondrial permeability transition pores, prevents the release of AIF from the mitochondrion but does not affect its apoptogenic activity. These results indicate that AIF is a mitochondrial effector of apoptotic cell death.


Oncogene | 1997

The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death

Tamara Hirsch; Piero Marchetti; Santos S. Susin; Bruno Dallaporta; Naoufal Zamzami; Isabel Marzo; Maurice Geuskens; Guido Kroemer

Mitochondrial alterations including permeability transition (PT) constitute critical events of the apoptotic cascade and are under the control of Bcl-2 related gene products. Here we show that induction of PT is sufficient to activate CPP32-like proteases with DEVDase activity and the associated cleavage of the nuclear DEVDase substrate poly(ADP-ribose) polymerase (PARP). Thus, direct intervention on mitochondria using a ligand of the mitochondrial benzodiazepin receptor or a protonophore causes DEVDase activation. In addition, the DEVDase activation triggered by conventional apoptosis inducers (glucocorticoids or topoisomerase inhibitors) is prevented by inhibitors of PT. The protease inhibitor N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD.fmk) completely prevents the activation of DEVDase and PARP cleavage, as well as the manifestation of nuclear apoptosis (chromatin condensation, DNA fragmentation, hypoploidy). In addition, Z-VAD.fmk delays the manifestation of apoptosis-associated changes in cellular redox potentials (hypergeneration of superoxide anion, oxidation of compounds of the inner mitochondrial membrane, depletion of non-oxidized glutathione), as well as the exposure of phosphatidylserine residues in the outer plasma membrane leaflet. Although Z-VAD.fmk retards cytolysis, it is incapable of preventing disruption of the plasma membrane during protracted cell culture (12 – 24 h), even in conditions in which it completely blocks nuclear apoptosis (chromatin condensation and DNA fragmentation). Electron microscopic analysis confirms that cells treated with PT inducers alone undergo apoptosis, whereas cells kept in identical conditions in the presence of Z-VAD.fmk die from necrosis. These observations are compatible with the hypothesis that PT would be a rate limiting step in both the apoptotic and the necrotic modes of cell death. In contrast, it would be the availability of apoptogenic proteases that would determine the choice between the two death modalities.


Oncogene | 1998

Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins.

Naoufal Zamzami; Catherine Brenner; Isabel Marzo; Santos A. Susin; Guido Kroemer

Bcl-2 is the prototype of a class of oncogenes which regulates apoptosis. Bcl-2-related gene products with either death-promoting and death-inhibitory activity are critically involved in numerous disease states and thus constitute prime targets for therapeutic interventions. The relative amount of death agonists and antagonists from the Bcl-2 family constitutes a regulatory rheostat whose function is determined, at least in part, by selective protein-protein interactions. Bcl-2 and its homologs insert into intracellular membranes including mitochondria, the endoplasmatic reticulum and the nuclear envelope. Many of the molecular genetic, ultrastructural, crystallographic and functional studies suggest that Bcl-2-related molecules exert their apoptosis-regulatory effects via regulating mitochondrial alterations preceding the activation of apoptogenic proteases and nucleases. Via a direct effect on mitochondrial membranes, Bcl-2 prevents all hallmarks of the early stage of apoptosis including disruption of the inner mitochondrial transmembrane potential and the release of apoptogenic protease activators from mitochondria. The mitochondrial permeability transition (PT) pore, also called mitochondrial megachannel or multiple conductance channel, is a multiprotein complex formed at the contact site between the mitochondrial inner and outer membranes, exactly at the same localization at which Bax, Bcl-2, and Bcl-XL are particularly abundant. The PT pore participates in the regulation of matrix Ca2+, pH, ΔΨm, and volume and functions as a Ca2+-, voltage-, pH-, and redox-gated channel with several levels of conductance and little if any ion selectivity. Experiments involving the purified PT pore complex indicate that Bax, Bcl-2, and Bcl-XL exert at least part of their apoptosis-regulatory function by facilitating (Bax) or inhibiting (Bcl-2, Bcl-XL) PT pore opening. These findings clarify the principal (but not exclusive) mechanism of Bcl-2-mediated cytoprotection.


Oncogene | 2000

Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator.

Catherine Brenner; Herve Cadiou; Helena La Vieira; Naoufal Zamzami; Isabel Marzo; Zhihua Xie; Brian Leber; David W. Andrews; Herve Duclohier; John C. Reed; Guido Kroemer

Bcl-2 family protein including anti-apoptotic (Bcl-2) or pro-apoptotic (Bax) members can form ion channels when incorporated into synthetic lipid bilayers. This contrasts with the observation that Bcl-2 stabilizes the mitochondrial membrane barrier function and inhibits the permeability transition pore complex (PTPC). Here we provide experimental data which may explain this apparent paradox. Bax and adenine nucleotide translocator (ANT), the most abundant inner mitochondrial membrane protein, can interact in artificial lipid bilayers to yield an efficient composite channel whose electrophysiological properties differ quantitatively and qualitatively from the channels formed by Bax or ANT alone. The formation of this composite channel can be observed in conditions in which Bax protein alone has no detectable channel activity. Cooperative channel formation by Bax and ANT is stimulated by the ANT ligand atractyloside (Atr) but inhibited by ATP, indicating that it depends on the conformation of ANT. In contrast to the combination of Bax and ANT, ANT does not form active channels when incorporated into membranes with Bcl-2. Rather, ANT and Bcl-2 exhibit mutual inhibition of channel formation. Bcl-2 prevents channel formation by Atr-treated ANT and neutralizes the cooperation between Bax and ANT. Our data are compatible with a ménage à trois model of mitochondrial apoptosis regulation in which ANT, the likely pore forming protein within the PTPC, interacts with Bax or Bcl-2 which influence its pore forming potential in opposing manners.


FEBS Letters | 1997

Nitric oxide induces apoptosis via triggering mitochondrial permeability transition

Sonsoles Hortelano; Bruno Dallaporta; Naoufal Zamzami; Tamara Hirsch; Santos A. Susin; Isabel Marzo; Lisardo Boscá; Guido Kroemer

Nitric oxide (NO) induces apoptosis in thymocytes, peripheral T cells, myeloid cells and neurons. Here we show that NO is highly efficient in inducing mitochondrial permeability transition, thereby causing the liberation of apoptogenic factors from mitochondria which can induce nuclear apoptosis (DNA condensation and DNA fragmentation) in isolated nuclei in vitro. In intact thymocytes, NO triggers disruption of the mitochondrial transmembrane potential, followed by hypergeneration of reactive oxygen species, exposure of phosphatidyl serine on the outer plasma membrane leaflet, and nuclear apoptosis. Inhibitors of mitochondrial permeability transition such as bongkrekic acid and a cyclophilin D‐binding cyclosporin A derivative, N‐methyl‐Val‐4‐cyclosporin A, prevent the mitochondrial as well as all post‐mitochondrial signs of apoptosis induced by NO including nuclear DNA fragmentation and exposure of phosphatidylserine residues on the cell surface. These findings indicate that NO can cause apoptosis via triggering of permeability transition.


Oncogene | 1999

Lonidamine triggers apoptosis via a direct, Bcl-2-inhibited effect on the mitochondrial permeability transition pore.

Luigi Ravagnan; Isabel Marzo; Paola Costantini; Santos A. Susin; Naoufal Zamzami; Patrice X. Petit; François Hirsch; Marc Goulbern; Marie-France Poupon; Laurent Miccoli; Zhihua Xie; John C. Reed; Guido Kroemer

The molecular mode of action of lonidamine, a therapeutic agent employed in cancer chemotherapy, has been elusive. Here we provide evidence that lonidamine (LND) acts on mitochondria to induce apoptosis. LND provokes a disruption of the mitochondrial transmembrane potential which precedes signs of nuclear apoptosis and cytolysis. The mitochondrial and cytocidal effects of LND are not prevented by inhibitors of caspases or of mRNA or protein synthesis. However, they are prevented by transfection-enforced overexpression of Bcl-2, an oncoprotein which inhibits apoptosis by stabilizing the mitochondrial membrane barrier function. Accordingly, the cell death-inducing effect of LND is amplified by simultaneous addition of PK11195, an isoquinoline ligand of the peripheral benzodiazepine receptor which antagonizes the cytoprotective effect of Bcl-2. When added to isolated nuclei, LND fails to provoke DNA degradation unless mitochondria are added simultaneously. In isolated mitochondria, LND causes the dissipation of the mitochondrial inner transmembrane potential and the release of apoptogenic factors capable of inducing nuclear apoptosis in vitro. Thus the mitochondrion is the subcellular target of LND. All effects of LND on isolated mitochondria are counteracted by cyclosporin A, an inhibitor of the mitochondrial PT pore. We therefore tested the effect of LND on the purified PT pore reconstituted into liposomes. LND permeabilizes liposomal membranes containing the PT pore. This effect is prevented by addition of recombinant Bcl-2 protein but not by a mutant Bcl-2 protein that has lost its apoptosis-inhibitory function. Altogether these data indicate that LND represents a novel type of anti-cancer agent which induces apoptosis via a direct effect on the mitochondrial PT pore.


Oncogene | 1998

The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition

Naoufal Zamzami; Isabel Marzo; Santos A. Susin; Catherine Brenner; Nathanael Larochette; Philippe Marchetti; John C. Reed; Reinhard Kofler; Guido Kroemer

In several different cell lines, Bcl-2 prevents the induction of apoptosis (DNA fragmentation, PARP cleavage, phosphatidylserine exposure) by the pro-oxidant ter-butylhydroperoxide (t-BHP) but has no cytoprotective effect when apoptosis is induced by the thiol crosslinking agent diazenedicarboxylic acid bis 5N,N-dimethylamide (diamide). Both t-BHP and diamide cause a disruption of the mitochondrial transmembrane potential ΔΨm that is not inhibited by the broad spectrum caspase inhibitor Z-VAD.fmk, although Z-VAD.fmk does prevent nuclear DNA fragmentation and poly(ADP-ribose) polymerase cleavage in these models. Bcl-2 stabilizes the ΔΨm of t-BHP-treated cells but has no inhibitory effect on the ΔΨm collapse induced by diamide. As compared to normal controls, isolated mitochondria from Bcl-2 overexpressing cells are relatively resistant to the induction of ΔΨm disruption by t-BHP in vitro. Such Bcl-2 overexpressing mitochondria also fail to release apoptosis-inducing factor (AIF) and cytochrome c from the intermembrane space, whereas control mitochondria not overexpressing Bcl-2 do liberate AIF and cytochrome c in response to t-BHP. In contrast, Bcl-2 does not confer protection against diamide-triggered ΔΨm collapse and the release of AIF and cytochrome c. This indicates that Bcl-2 suppresses the permeability transition (PT) and the associated release of intermembrane proteins induced by t-BHP but not by diamide. To further investigate the mode of action of Bcl-2, semi-purified PT pore complexes were reconstituted in liposomes in a cell-free, organelle-free system. Recombinant Bcl-2 or Bcl-XL proteins augment the resistance of reconstituted PT pore complexes to pore opening induced by t-BHP. In contrast, mutated Bcl-2 proteins which have lost their cytoprotective potential also lose their PT-modulatory capacity. Again, Bcl-2 fails to confer protection against diamide in this experimental system. The reconstituted PT pore complex itself cannot release cytochrome c encapsulated into liposomes. Altogether these data suggest that pro-oxidants, thiol-reactive agents, and Bcl-2 can regulate the PT pore complex in a direct fashion, independently from their effects on cytochrome c. Furthermore, our results suggest a strategy for inducing apoptosis in cells overexpressing apoptosis-inhibitory Bcl-2 analogs.


Bioscience Reports | 1997

ROLE OF THE MITOCHONDRIAL PERMEABILITY TRANSITION PORE IN APOPTOSIS

Tamara Hirsch; Isabel Marzo; Guido Kroemer

Mitochondrial permeability transition (PT) involves the formation of proteaceous, regulated pores, probably by apposition of inner and outer mitochondrial membrane proteins which cooperate to form the mitochondrial megachannel (=mitochondrial PT pore). PT has important metabolic consequences, namely the collapse of the mitochondrial transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins. Recent evidence suggests that PT is a critical, rate limiting event of apoptosis (programmed cell death): (i) induction of PT suffices to cause apoptosis; (ii) one of the immediate consequences of PT, disruption of the mitochondrial transmembrane potential (ΔΨm), is a constant feature of early apoptosis; (iii) prevention of PT impedes the ΔΨm collapse as well as all other features of apoptosis at the levels of the cytoplasma, the nucleus, and the plasma membrane; (iv) PT is modulated by members of the apoptosis-regulatory bcl-2 gene family. Recent data suggest that the acquisition of the apoptotic phenotype, including characteristic changes in nuclear morphology and biochemistry (chromatin condensation and DNA fragmentation), depends on the action of apoptogenic proteins released from the mitochondrial intermembrane space.


FEBS Letters | 1998

Caspases disrupt mitochondrial membrane barrier function

Isabel Marzo; Santos A. Susin; Patrice X. Petit; Luigi Ravagnan; Catherine Brenner; Nathanael Larochette; Naoufal Zamzami; Guido Kroemer

Mitochondrial intermembrane proteins including cytochrome c are known to activate caspases. Accordingly, a disruption of the mitochondrial membrane barrier function with release of cytochrome into the cytosol has been shown to precede caspase activation in a number of different models of apoptosis. Here, we addressed the question of whether caspases themselves can affect mitochondrial membrane function. Recombinant caspases were added to purified mitochondria and were found to affect the permeability of both mitochondrial membranes. Thus, caspases cause a dissipation of the mitochondrial inner transmembrane potential. In addition, caspases cause intermembrane proteins including cytochrome c and AIF (apoptosis‐inducing factor) to be released through the outer mitochondrial membrane. These observations suggest that caspases and mitochondria can engage in a circular self‐amplification loop. An increase in mitochondrial membrane permeability would cause the release of caspase activators, and caspases, once activated, would in turn increase the mitochondrial membrane permeability. Such a self‐amplifying system could accelerate the apoptotic process and/or coordinate the apoptotic response between different mitochondria within the same cell.


Biomedicine & Pharmacotherapy | 1998

The central role of the mitochondrial megachannel in apoptosis: evidence obtained with intact cells, isolated mitochondria, and purified protein complexes.

Isabel Marzo; Catherine Brenner; Guido Kroemer

The mitochondrial megachannel (also called permeability transition pore) is a polyprotein complex formed in the contact site between the inner and the outer mitochondrial membranes and participates in the regulation of mitochondrial membrane permeability. We have obtained three independent lines of evidence suggesting the implication of the mitochondrial megachannel in apoptosis. First, in intact cells, apoptosis is accompanied by an early dissipation of the mitochondrial transmembrane potential (delta psi m). In several models of apoptosis, specific agents inhibiting the mitochondrial megachannels prevent this delta psi m dissipation and simultaneously abolish the manifestations of caspase- and endonuclease activation, indicating that megachannel opening is a critical event of the apoptotic process. Second, mitochondria are rate-limiting for caspase and nuclease activation in several cell-free systems of apoptosis. Isolated mitochondria release apoptogenic factors capable of activating pro-caspases or endonucleases upon opening of the mitochondrial megachannel in vitro. Third, opening of the purified megachannel reconstituted into liposomes is inhibited by recombinant Bcl-2 or Bcl-XL, two apoptosis-inhibitory proteins which also prevent megachannel opening in cells and isolated mitochondria. This indicates that the megachannel is under the direct regulatory control of anti-apoptotic members of the Bcl-2 family. Altogether, our results suggest that megachannel opening is sufficient and (mostly) necessary for triggering apoptosis.

Collaboration


Dive into the Isabel Marzo's collaboration.

Top Co-Authors

Avatar

Naoufal Zamzami

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamara Hirsch

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Dallaporta

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Etienne Jacotot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Luigi Ravagnan

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Patrice X. Petit

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Paola Costantini

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge