Tamara Hirsch
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tamara Hirsch.
Oncogene | 1997
Tamara Hirsch; Piero Marchetti; Santos S. Susin; Bruno Dallaporta; Naoufal Zamzami; Isabel Marzo; Maurice Geuskens; Guido Kroemer
Mitochondrial alterations including permeability transition (PT) constitute critical events of the apoptotic cascade and are under the control of Bcl-2 related gene products. Here we show that induction of PT is sufficient to activate CPP32-like proteases with DEVDase activity and the associated cleavage of the nuclear DEVDase substrate poly(ADP-ribose) polymerase (PARP). Thus, direct intervention on mitochondria using a ligand of the mitochondrial benzodiazepin receptor or a protonophore causes DEVDase activation. In addition, the DEVDase activation triggered by conventional apoptosis inducers (glucocorticoids or topoisomerase inhibitors) is prevented by inhibitors of PT. The protease inhibitor N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD.fmk) completely prevents the activation of DEVDase and PARP cleavage, as well as the manifestation of nuclear apoptosis (chromatin condensation, DNA fragmentation, hypoploidy). In addition, Z-VAD.fmk delays the manifestation of apoptosis-associated changes in cellular redox potentials (hypergeneration of superoxide anion, oxidation of compounds of the inner mitochondrial membrane, depletion of non-oxidized glutathione), as well as the exposure of phosphatidylserine residues in the outer plasma membrane leaflet. Although Z-VAD.fmk retards cytolysis, it is incapable of preventing disruption of the plasma membrane during protracted cell culture (12 – 24 h), even in conditions in which it completely blocks nuclear apoptosis (chromatin condensation and DNA fragmentation). Electron microscopic analysis confirms that cells treated with PT inducers alone undergo apoptosis, whereas cells kept in identical conditions in the presence of Z-VAD.fmk die from necrosis. These observations are compatible with the hypothesis that PT would be a rate limiting step in both the apoptotic and the necrotic modes of cell death. In contrast, it would be the availability of apoptogenic proteases that would determine the choice between the two death modalities.
FEBS Letters | 1996
Naoufal Zamzami; Philippe Marchetti; Maria Castedo; Tamara Hirsch; Santos A. Susin; Benjamin Masse; Guido Kroemer
In a number of experimental systems, the early stage of the apoptotic process, i.e. the stage which precedes nuclear disintegration, is characterized by the breakdown of the inner mitochondrial transmembrane potential (ΔΨ m). Here we address the question as to whether mitochondrial permeability transition (PT) pores may account for the ΔΨ m dissipation in lymphocyte apoptosis. Drugs known for their PT‐inhibitory potential (bongkrekic acid, cyclosporin A, and the non‐immunosuppressive cyclosporin A analogue N‐methyl‐Val‐4‐cyclosporin A) are capable of preventing the apoptotic ΔΨ m disruption. Moreover, pharmacological modulation of PT‐mediated ΔΨ m dissipation can prevent apoptosis. Thus, while suppressing the ΔΨ m disruption, bongkrekic acid also inhibits the apoptotic chromatinolysis. In conclusion, these data are compatible with the hypothesis that apoptotic ΔΨ m disruption is mediated by the formation of PT pores and that PT‐mediated ΔΨ m disruption is a critical event of the apoptotic cascade.
Journal of Bioenergetics and Biomembranes | 1997
Naoufal Zamzami; Tamara Hirsch; Bruno Dallaporta; Patrice X. Petit; Guido Kroemer
Both physiological cell death (apoptosis) and at least some cases of accidental cell death (necrosis) involve a two-step-process. At a first level, numerous physiological or pathological stimuli can trigger mitochondrial permeability transition which constitutes a rate-limiting event and initiates the common phase of the death process. Mitochondrial permeability transition (FT) involves the formation of proteaceous, regulated pores, probably by apposition of inner and outer mitochondrial membrane proteins which cooperate to form the mitochondrial PT pore complex. Inhibition of PT by pharmacological intervention on mitochondrial structures or mitochondrial expression of the apoptosis-inhibitory oncoprotein Bcl-2 thus can prevent cell death. At a second level, the consequences of mitochondrial dysfunction (collapse of the mitochondrial transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins) can entail a bioenergetic catastrophe culminating in the disruption of plasma membrane integrity (necrosis) and/or the activation and action of apoptogenic proteases with secondary endonuclease activation and consequent oligonucleosomal DNA fragmentation (apoptosis). The acquisition of the biochemical and ultrastructural features of apoptosis critically relies on the liberation of apoptogenic proteases or protease activators from the mitochondrial intermembrane space. This scenario applies to very different models of cell death. The notion that mitochondrial events control cell death has major implications for the development of death-inhibitory drugs.
FEBS Letters | 1997
Sonsoles Hortelano; Bruno Dallaporta; Naoufal Zamzami; Tamara Hirsch; Santos A. Susin; Isabel Marzo; Lisardo Boscá; Guido Kroemer
Nitric oxide (NO) induces apoptosis in thymocytes, peripheral T cells, myeloid cells and neurons. Here we show that NO is highly efficient in inducing mitochondrial permeability transition, thereby causing the liberation of apoptogenic factors from mitochondria which can induce nuclear apoptosis (DNA condensation and DNA fragmentation) in isolated nuclei in vitro. In intact thymocytes, NO triggers disruption of the mitochondrial transmembrane potential, followed by hypergeneration of reactive oxygen species, exposure of phosphatidyl serine on the outer plasma membrane leaflet, and nuclear apoptosis. Inhibitors of mitochondrial permeability transition such as bongkrekic acid and a cyclophilin D‐binding cyclosporin A derivative, N‐methyl‐Val‐4‐cyclosporin A, prevent the mitochondrial as well as all post‐mitochondrial signs of apoptosis induced by NO including nuclear DNA fragmentation and exposure of phosphatidylserine residues on the cell surface. These findings indicate that NO can cause apoptosis via triggering of permeability transition.
Bioscience Reports | 1997
Tamara Hirsch; Isabel Marzo; Guido Kroemer
Mitochondrial permeability transition (PT) involves the formation of proteaceous, regulated pores, probably by apposition of inner and outer mitochondrial membrane proteins which cooperate to form the mitochondrial megachannel (=mitochondrial PT pore). PT has important metabolic consequences, namely the collapse of the mitochondrial transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins. Recent evidence suggests that PT is a critical, rate limiting event of apoptosis (programmed cell death): (i) induction of PT suffices to cause apoptosis; (ii) one of the immediate consequences of PT, disruption of the mitochondrial transmembrane potential (ΔΨm), is a constant feature of early apoptosis; (iii) prevention of PT impedes the ΔΨm collapse as well as all other features of apoptosis at the levels of the cytoplasma, the nucleus, and the plasma membrane; (iv) PT is modulated by members of the apoptosis-regulatory bcl-2 gene family. Recent data suggest that the acquisition of the apoptotic phenotype, including characteristic changes in nuclear morphology and biochemistry (chromatin condensation and DNA fragmentation), depends on the action of apoptogenic proteins released from the mitochondrial intermembrane space.
Journal of Experimental Medicine | 1995
Naoufal Zamzami; Philippe Marchetti; Maria Castedo; Didier Decaudin; Antonio Macho; Tamara Hirsch; Santos A. Susin; Patrice X. Petit; Bernard Mignotte; Guido Kroemer
Journal of Experimental Medicine | 1996
Naoufal Zamzami; Santos A. Susin; Philippe Marchetti; Tamara Hirsch; I. Gomez-Monterrey; Maria Castedo; Guido Kroemer
Journal of Experimental Medicine | 1996
Santos A. Susin; Naoufal Zamzami; Maria Castedo; Tamara Hirsch; Philippe Marchetti; Antonio Macho; Eric Daugas; Maurice Geuskens; Guido Kroemer
Journal of Experimental Medicine | 1996
Philippe Marchetti; Maria Castedo; Santos A. Susin; Naoufal Zamzami; Tamara Hirsch; Antonio Macho; Astrid Haeffner; Frangois Hirsch; Maurice Geuskens; Guido Kroemer
Journal of Immunology | 1996
Maria Castedo; Tamara Hirsch; Santos A. Susin; Naoufal Zamzami; Philippe Marchetti; A Macho; Guido Kroemer