Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S Pesonen is active.

Publication


Featured researches published by S Pesonen.


Molecular Therapy | 2010

Treatment of Cancer Patients With a Serotype 5/3 Chimeric Oncolytic Adenovirus Expressing GMCSF

Anniina Koski; Lotta Kangasniemi; Sophie Escutenaire; Sari Pesonen; Vincenzo Cerullo; Iulia Diaconu; Petri Nokisalmi; Mari Raki; Maria Rajecki; Kilian Guse; Tuuli Ranki; Minna Oksanen; Sirkka-Liisa Holm; Elina Haavisto; Aila Karioja-Kallio; Leena Laasonen; Kaarina Partanen; Matteo Ugolini; Andreas Helminen; Eerika Karli; Päivi Hannuksela; S Pesonen; Timo Joensuu; Anna Kanerva; Akseli Hemminki

Augmenting antitumor immunity is a promising way to enhance the potency of oncolytic adenoviral therapy. Granulocyte-macrophage colony-stimulating factor (GMCSF) can mediate antitumor effects by recruiting natural killer cells and by induction of tumor-specific CD8(+) cytotoxic T-lymphocytes. Serotype 5 adenoviruses (Ad5) are commonly used in cancer gene therapy. However, expression of the coxsackie-adenovirus receptor is variable in many advanced tumors and preclinical data have demonstrated an advantage for replacing the Ad5 knob with the Ad3 knob. Here, a 5/3 capsid chimeric and p16-Rb pathway selective oncolytic adenovirus coding for GMCSF was engineered and tested preclinically. A total of 21 patients with advanced solid tumors refractory to standard therapies were then treated intratumorally and intravenously with Ad5/3-D24-GMCSF, which was combined with low-dose metronomic cyclophosphamide to reduce regulatory T cells. No severe adverse events occurred. Analysis of pretreatment samples of malignant pleural effusion and ascites confirmed the efficacy of Ad5/3-D24-GMCSF in transduction and cell killing. Evidence of biological activity of the virus was seen in 13/21 patients and 8/12 showed objective clinical benefit as evaluated by radiology with Response Evaluation Criteria In Solid Tumors (RECIST) criteria. Antiadenoviral and antitumoral immune responses were elicited after treatment. Thus, Ad5/3-D24-GMCSF seems safe in treating cancer patients and promising signs of efficacy were seen.


Cancer Research | 2012

Oncolytic Immunotherapy of Advanced Solid Tumors with a CD40L-Expressing Replicating Adenovirus: Assessment of Safety and Immunologic Responses in Patients

Sari Pesonen; Iulia Diaconu; Lotta Kangasniemi; Tuuli Ranki; Anna Kanerva; S Pesonen; Ulrike Gerdemann; Ann M. Leen; Kalevi Kairemo; Minna Oksanen; Elina Haavisto; Sirkka-Liisa Holm; Aila Karioja-Kallio; Satu Kauppinen; Kaarina Partanen; Leena Laasonen; T. Joensuu; Tuomo Alanko; Vincenzo Cerullo; Akseli Hemminki

The immunosuppressive environment of advanced tumors is a primary obstacle to the efficacy of immunostimulatory and vaccine approaches. Here, we report an approach to arm an oncolytic virus with CD40 ligand (CD40L) to stimulate beneficial immunologic responses in patients. A double-targeted chimeric adenovirus controlled by the hTERT promoter and expressing CD40L (CGTG-401) was constructed and nine patients with progressing advanced solid tumors refractory to standard therapies were treated intratumorally. No serious adverse events resulting in patient hospitalization occurred. Moderate or no increases in neutralizing antibodies were seen, suggesting effective Th1 immunologic effects. An assessment of the blood levels of virus indicated 17.5% of the samples (n = 40) were positive at a low level early after treatment, but not thereafter. In contrast, high levels of virus, CD40L, and RANTES were documented locally at the tumor. Peripheral blood mononuclear cells were analyzed by IFN-γ ELISPOT analysis and induction of both survivin-specific and adenovirus-specific T cells was seen. Antitumor T-cell responses were even more pronounced when assessed by intracellular cytokine staining after stimulation with tumor type-specific peptide pools. Of the evaluable patients, 83% displayed disease control at 3 months and in both cases in which treatment was continued the effect was sustained for at least 8 months. Injected and noninjected lesions responded identically. Together, these findings support further clinical evaluation of CGTG-401.


Cancer Research | 2012

Immune Response Is an Important Aspect of the Antitumor Effect Produced by a CD40L-Encoding Oncolytic Adenovirus

Iulia Diaconu; Vincenzo Cerullo; Mari Hirvinen; Sophie Escutenaire; Matteo Ugolini; S Pesonen; Simona Bramante; Suvi Parviainen; Anna Kanerva; Angelica Loskog; Aristides G. Eliopoulos; Sari Pesonen; Akseli Hemminki

Oncolytic adenovirus is an attractive platform for immunotherapy because virus replication is highly immunogenic and not subject to tolerance. Although oncolysis releases tumor epitopes and provides costimulatory danger signals, arming the virus with immunostimulatory molecules can further improve efficacy. CD40 ligand (CD40L, CD154) induces apoptosis of tumor cells and triggers several immune mechanisms, including a T-helper type 1 (T(H)1) response, which leads to activation of cytotoxic T cells and reduction of immunosuppression. In this study, we constructed a novel oncolytic adenovirus, Ad5/3-hTERT-E1A-hCD40L, which features a chimeric Ad5/3 capsid for enhanced tumor transduction, a human telomerase reverse transcriptase (hTERT) promoter for tumor selectivity, and human CD40L for increased efficacy. Ad5/3-hTERT-E1A-hCD40L significantly inhibited tumor growth in vivo via oncolytic and apoptotic effects, and (Ad5/3-hTERT-E1A-hCD40L)-mediated oncolysis resulted in enhanced calreticulin exposure and HMGB1 and ATP release, which were suggestive of immunogenicity. In two syngeneic mouse models, murine CD40L induced recruitment and activation of antigen-presenting cells, leading to increased interleukin-12 production in splenocytes. This effect was associated with induction of the T(H)1 cytokines IFN-γ, RANTES, and TNF-α. Tumors treated with Ad5/3-CMV-mCD40L also displayed an enhanced presence of macrophages and cytotoxic CD8(+) T cells but not B cells. Together, our findings show that adenoviruses coding for CD40L mediate multiple antitumor effects including oncolysis, apoptosis, induction of T-cell responses, and upregulation of T(H)1 cytokines.


Molecular Therapy | 2013

Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients.

Ilkka Liikanen; Laura Ahtiainen; Mari Hirvinen; Simona Bramante; Vincenzo Cerullo; Petri Nokisalmi; Otto Hemminki; Iulia Diaconu; Sari Pesonen; Anniina Koski; Lotta Kangasniemi; S Pesonen; Minna Oksanen; Leena Laasonen; Kaarina Partanen; Timo Joensuu; Fang Zhao; Anna Kanerva; Akseli Hemminki

Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum--a possible indicator of immune response--increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy.


Clinical Cancer Research | 2013

Antiviral and Antitumor T-cell Immunity in Patients Treated with GM-CSF–Coding Oncolytic Adenovirus

Anna Kanerva; Petri Nokisalmi; Iulia Diaconu; Anniina Koski; Vincenzo Cerullo; Ilkka Liikanen; Siri Tähtinen; Minna Oksanen; Raita Heiskanen; S Pesonen; T. Joensuu; Tuomo Alanko; Kaarina Partanen; Leena Laasonen; Kalevi Kairemo; Sari Pesonen; Lotta Kangasniemi; Akseli Hemminki

Purpose: Multiple injections of oncolytic adenovirus could enhance immunologic response. In the first part of this article, the focus was on immunologic aspects. Sixty patients previously naïve to oncolytic virus and who had white blood cells available were treated. Thirty-nine of 60 were assessed after a single virus administration, whereas 21 of 60 received a “serial treatment” consisting of three injections within 10 weeks. In the second part, we focused on 115 patients treated with a granulocyte macrophage colony-stimulating factor (GM–CSF)–coding capsid chimeric adenovirus, CGTG-102. Results: Following serial treatment, both increase and decrease in antitumor T cells in blood were seen more frequently, findings which are compatible with induction of T-cell immunity and trafficking of T cells to tumors, respectively. Safety was good in both groups. In 115 patients treated with CGTG-102 (Ad5/3-D24-GMCSF), median overall survival was 111 days following single and 277 days after serial treatment in nonrandomized comparison. Switching the virus capsid for avoiding neutralizing antibodies in a serial treatment featuring three different viruses did not impact safety or efficacy. A correlation between antiviral and antitumor T cells was seen (P = 0.001), suggesting that viral oncolysis can result in epitope spreading and breaking of tumor-associated immunologic tolerance. Alternatively, some patients may be more susceptible to induction of T-cell immunity and/or trafficking. Conclusions: These results provide the first human data linking antiviral immunity with antitumor immunity, implying that oncolytic viruses could have an important role in cancer immunotherapy. Clin Cancer Res; 19(10); 2734–44. ©2013 AACR.


Gene Therapy | 2010

Prolonged systemic circulation of chimeric oncolytic adenovirus Ad5/3-Cox2L-D24 in patients with metastatic and refractory solid tumors

S Pesonen; Petri Nokisalmi; Sophie Escutenaire; Merja Särkioja; M Raki; Vincenzo Cerullo; Lotta Kangasniemi; Leena Laasonen; Camilla Ribacka; Kilian Guse; Elina Haavisto; Minna Oksanen; Maria Rajecki; Andreas Helminen; Ari Ristimäki; Aila Karioja-Kallio; Eerika Karli; Teemu Kantola; Gerd J. Bauerschmitz; A Kanerva; T. Joensuu; Akseli Hemminki

Eighteen patients with refractory and progressive solid tumors were treated with a single round of triple modified oncolytic adenovirus (Ad5/3-Cox2L-D24). Ad5/3-Cox2L-D24 is the first non-Coxsackie-adenovirus receptor-binding oncolytic adenovirus used in humans. Grades 1–2 flu-like symptoms, fever, and fatigue were seen in most patients, whereas transaminitis or thrombocytopenia were seen in some. Non-hematological grades 3–5 side effects were seen in one patient with grade 3 ileus. Treatment resulted in high neutralizing antibody titers within 3 weeks. Virus appeared in serum 2–4 days after treatment in 83% of patients and persisted for up to 5 weeks. One out of five radiologically evaluable patients had partial response (PR), one had minor response (MR), and three had progressive disease (PD). Two patients scored as PD had a decrease in tumor density. Tumor reductions not measurable with Response Evaluation Criteria In Solid Tumors (RECIST) were seen in a further four patients. PR, MR, stable disease, and PD were seen in 12, 23.5, 35, and 29.5% of tumor markers analyzed, respectively (N=17). Ad5/3-Cox2L-D24 appears safe for treatment of cancer in humans and extended virus circulation results from a single treatment. Objective evidence of anti-tumor activity was seen in 11/18 (61%) of patients. Clinical trials are needed to extend these findings.


Molecular Therapy | 2012

Ad3-hTERT-E1A, a Fully Serotype 3 Oncolytic Adenovirus, in Patients With Chemotherapy Refractory Cancer

Otto Hemminki; Iulia Diaconu; Vincenzo Cerullo; S Pesonen; Anna Kanerva; Timo Joensuu; Kalevi Kairemo; Leena Laasonen; Kaarina Partanen; Lotta Kangasniemi; André Lieber; Sari Pesonen; Akseli Hemminki

Twenty-five patients with chemotherapy refractory cancer were treated with a fully serotype 3-based oncolytic adenovirus Ad3-hTERT-E1A. In mice, Ad3 induced higher amounts of cytokines but less liver damage than Ad5 or Ad5/3. In humans, the only grade 3 adverse reactions were self-limiting cytopenias and generally the safety profile resembled Ad5-based oncolytic viruses. Patients that had been previously treated with Ad5 viruses presented longer lasting lymphocytopenia but no median increase in Ad3-specific T-cells in blood, suggesting immunological activity against antigens other than Ad3 hexon. Frequent alterations in antitumor T-cells in blood were seen regardless of previous virus exposure. Neutralizing antibodies against Ad3 increased in all patients, whereas Ad5 neutralizing antibodies remained stable. Treatment with Ad3-hTERT-E1A resulted in re-emergence of Ad5 viruses from previous treatments into blood and vice versa. Signs of possible efficacy were seen in 11/15 (73%) patients evaluable for tumor markers, four of which were treated only intravenously. Particularly promising results were seen in breast cancer patients and especially those receiving concomitant trastuzumab. Taken together, Ad3-hTERT-E1A seems safe for further clinical testing or development of armed versions. It offers an immunologically attractive alternative, with possible pharmacodynamic differences and a different receptor compared to Ad5.


Cancer Gene Therapy | 2011

Oncolytic adenovirus based on serotype 3.

Otto Hemminki; Gerd J. Bauerschmitz; Silvio Hemmi; Sergio Lavilla-Alonso; Iulia Diaconu; Kilian Guse; Anniina Koski; Renee A. Desmond; M Lappalainen; Anna Kanerva; Vincenzo Cerullo; S Pesonen; Akseli Hemminki

Oncolytic adenoviruses have been safe in clinical trials but the efficacy has been mostly limited. All published trials have been performed with serotype 5 based viruses. The expression level of the Ad5 receptor CAR may be variable in advanced tumors. In contrast, the Ad3 receptor remains unclear, but is known to be abundantly expressed in most tumors. Therefore, we hypothesized that a fully serotype 3 oncolytic adenovirus might be useful for treating cancer. Patients exposed to adenoviruses develop high titers of serotype-specific neutralizing antibodies, which might compromise re-administration. Thus, having different serotype oncolytic viruses available might facilitate repeated dosing in humans. Ad3-hTERT-E1A is a fully serotype 3 oncolytic adenovirus controlled by the promoter of the catalytic domain of human telomerase. It was effective in vitro on cell lines representing seven major cancer types, although low toxicity was seen in non-malignant cells. In vivo, the virus had anti-tumor efficacy in three different animal models. Although in vitro oncolysis mediated by Ad3-hTERT-E1A and wild-type Ad3 occurred more slowly than with Ad5 or Ad5/3 (Ad3 fiber knob in Ad5) based viruses, in vivo the virus was at least as potent as controls. Anti-tumor efficacy was retained in presence of neutralizing anti-Ad5 antibodies whereas Ad5 based controls were blocked. In summary, we report generation of a non-Ad5 based oncolytic adenovirus, which might be useful for testing in cancer patients, especially in the context of high anti-Ad5 neutralizing antibodies.


Gene Therapy | 2008

Changing the adenovirus fiber for retaining gene delivery efficacy in the presence of neutralizing antibodies

Merja Särkioja; S Pesonen; M Raki; Tanja Hakkarainen; Jarmo A. Salo; Marko Ahonen; A Kanerva; Akseli Hemminki

Prior infection has primed most adult humans for a rapid neutralizing antibody (NAb) response when re-exposed to adenovirus. NAb induction can severely limit the efficacy of systemic re-administration of adenoviral gene therapy. We hypothesized that changing the fiber knob could overcome NAb. Immune-competent mice were exposed to serotype 5 adenovirus (Ad5)(GL), Ad5/3luc1, Ad5lucRGD or Ad5pK7(GL). Mice immunized with Ad5(GL) featured reduced intravenous Ad5(GL) gene transfer to most organs, including the liver, lung and spleen. Ad5(GL) gene transfer was affected much less by exposure to capsid-modified viruses. Anti-Ad5(GL) NAb blocked intravenous Ad5(GL) gene transfer to orthotopic lung cancer xenografts, whereas capsid-modified viruses were not affected. When gene transfer to fresh cancer and normal lung explants was analyzed, we found that capsid-modified viruses allowed effective gene delivery to tumors in the presence of anti-Ad5(GL) NAb, whereas Ad5(GL) was blocked. In contrast, crossblocking by NAbs induced by different viruses affected gene delivery to normal human lung explants, suggesting the importance of non-fiber-knob-mediated infection mechanisms. We conclude that changing the adenovirus fiber knob is sufficient to allow a relative degree of escape from preexisting NAb. If confirmed in trials, this approach might improve the efficacy of re-administration of adenoviral gene therapy to humans.


Gene Therapy | 2009

Ad5/3-9HIF-Δ24-VEGFR-1-Ig, an infectivity enhanced, dual-targeted and antiangiogenic oncolytic adenovirus for kidney cancer treatment

Kilian Guse; Iulia Diaconu; Maria Rajecki; M Sloniecka; Tanja Hakkarainen; Ari Ristimäki; A Kanerva; S Pesonen; Akseli Hemminki

Despite good safety data in clinical trials, oncolytic adenoviruses have not been efficient enough to make them a viable treatment alternative for cancers. As more potent viruses are being made, transcriptional and transductional targeting to tumor tissues becomes increasingly appealing. To improve antitumor efficacy, oncolytic adenoviruses can be armed with therapeutic transgenes, such as the antiangiogenic soluble vascular endothelial growth factor receptor 1-Ig fusion protein. We hypothesized that an infectivity enhanced, targeted, vascular endothelial growth factor receptor 1-Ig armed oncolytic adenovirus would exhibit improved specificity and antitumor effect in murine kidney cancer models. Two hypoxia inducible factor-sensitive promoters were evaluated for renal cancer specificity using a novel in vivo dual luciferase-imaging system. Earlier data had shown usefulness of the 5/3-serotype chimera capsid modification for kidney cancer. Therefore, we constructed Ad5/3-9HIF-Δ24-VEGFR-1-Ig, which showed good specificity and oncolytic effect on renal cancer cells in vitro and resulted in antitumor efficacy in a subcutaneous in vivo model, in which vascular endothelial growth factor receptor 1-Ig expression and a concurrent antiangiogenic effect were confirmed. In an intraperitoneally disseminated kidney cancer model, significantly enhanced survival was observed when compared with control viruses. These results suggest that a targeted, antiangiogenic, oncolytic adenovirus might be a valuable agent for testing in kidney cancer patients.

Collaboration


Dive into the S Pesonen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge