Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan D. Lima is active.

Publication


Featured researches published by Ivan D. Lima.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system

Scott C. Doney; Natalie M. Mahowald; Ivan D. Lima; Richard A. Feely; Fred T. Mackenzie; Jean-Francois Lamarque; Phil Rasch

Fossil fuel combustion and agriculture result in atmospheric deposition of 0.8 Tmol/yr reactive sulfur and 2.7 Tmol/yr nitrogen to the coastal and open ocean near major source regions in North America, Europe, and South and East Asia. Atmospheric inputs of dissociation products of strong acids (HNO3 and H2SO4) and bases (NH3) alter surface seawater alkalinity, pH, and inorganic carbon storage. We quantify the biogeochemical impacts by using atmosphere and ocean models. The direct acid/base flux to the ocean is predominately acidic (reducing total alkalinity) in the temperate Northern Hemisphere and alkaline in the tropics because of ammonia inputs. However, because most of the excess ammonia is nitrified to nitrate (NO3−) in the upper ocean, the effective net atmospheric input is acidic almost everywhere. The decrease in surface alkalinity drives a net air–sea efflux of CO2, reducing surface dissolved inorganic carbon (DIC); the alkalinity and DIC changes mostly offset each other, and the decline in surface pH is small. Additional impacts arise from nitrogen fertilization, leading to elevated primary production and biological DIC drawdown that reverses in some places the sign of the surface pH and air–sea CO2 flux perturbations. On a global scale, the alterations in surface water chemistry from anthropogenic nitrogen and sulfur deposition are a few percent of the acidification and DIC increases due to the oceanic uptake of anthropogenic CO2. However, the impacts are more substantial in coastal waters, where the ecosystem responses to ocean acidification could have the most severe implications for mankind.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Toxicity of atmospheric aerosols on marine phytoplankton

Adina Paytan; Katherine R. M. Mackey; Ying Chen; Ivan D. Lima; Scott C. Doney; Natalie M. Mahowald; Rochelle G. Labiosa; Anton F. Post

Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere–ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.


Global Biogeochemical Cycles | 2008

Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades

Helmuth Thomas; A. E. Friederike Prowe; Ivan D. Lima; Scott C. Doney; Rik Wanninkhof; Richard J. Greatbatch; Ute Schuster; Antoine Corbière

Observational studies report a rapid decline of ocean CO2 uptake in the temperate North Atlantic during the last decade. We analyze these findings using ocean physical‐biological numerical simulations forced with interannually varying atmospheric conditions for the period 1979–2004. In the simulations, surface ocean water mass properties and CO2 system variables exhibit substantial multiannual variability on sub‐basin scales in response to wind‐driven reorganization in ocean circulation and surface warming/cooling. The simulated temporal evolution of the ocean CO2 system is broadly consistent with reported observational trends and is influenced substantially by the phase of the North Atlantic Oscillation (NAO). Many of the observational estimates cover a period after 1995 of mostly negative or weakly positive NAO conditions, which are characterized in the simulations by reduced North Atlantic Current transport of subtropical waters into the eastern basin and by a decline in CO2 uptake. We suggest therefore that air‐sea CO2 uptake may rebound in the eastern temperate North Atlantic during future periods of more positive NAO, similar to the patterns found in our model for the sustained positive NAO period in the early 1990s. Thus, our analysis indicates that the recent rapid shifts in CO2 flux reflect decadal perturbations superimposed on more gradual secular trends. The simulations highlight the need for long‐term ocean carbon observations and modeling to fully resolve multiannual variability, which can obscure detection of the long‐term changes associated with anthropogenic CO2 uptake and climate change.


Tellus B | 2010

Variability of global net sea–air CO2 fluxes over the last three decades using empirical relationships

Geun-Ha Park; Rik Wanninkhof; Scott C. Doney; Taro Takahashi; Kitack Lee; Richard A. Feely; Christopher L. Sabine; Joaquin Trinanes; Ivan D. Lima

The interannual variability of net sea–air CO2 flux for the period 1982–2007 is obtained from a diagnostic model using empirical subannual relationships between climatological CO2 partial pressure in surface seawater (pCO2SW) and sea surface temperature (SST), along with interannual changes in SST and wind speed. These optimum subannual relationships show significantly better correlation between pCO2SW and SST than the previous relationships using fixed monthly boundaries.Our diagnostic model yields an interannual variability of±0.14 PgC yr−1 (1σ)with a 26-year mean of −1.48 PgC yr−1. The greatest interannual variability is found in the Equatorial Pacific, and significant variability is also found at northern and southern high-latitudes, depending in part, on which wind product is used. We provide an assessment of our approach by applying it to pCO2SW and SST output from a prognostic global biogeochemical ocean model. Our diagnostic approach applied to this model output shows reasonable agreement with the prognostic model net sea–air CO2 fluxes in terms of magnitude and phase of variability, suggesting that our diagnostic approach can capture much of the observed variability on regional to global scale. A notable exception is that our approach shows significantly less variability than the prognostic model in the Southern Ocean.


Journal of Geophysical Research | 2008

Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO2

Cynthia D. Nevison; Natalie M. Mahowald; Scott C. Doney; Ivan D. Lima; Guido R. van der Werf; James T. Randerson; D. F. Baker; Prasad S. Kasibhatla; Galen A. McKinley

Seasonal and interannual variability in atmospheric carbon dioxide (CO2) concentrations was simulated using fluxes from fossil fuel, ocean and terrestrial biogeochemical models, and a tracer transport model with time-varying winds. The atmospheric CO2 variability resulting from these surface fluxes was compared to observations from 89 GLOBALVIEW monitoring stations. At northern hemisphere stations, the model simulations captured most of the observed seasonal cycle in atmospheric CO2, with the land tracer accounting for the majority of the signal. The ocean tracer was 3–6 months out of phase with the observed cycle at these stations and had a seasonal amplitude only ∼10% on average of observed. Model and observed interannual CO2 growth anomalies were only moderately well correlated in the northern hemisphere (R ∼ 0.4–0.8), and more poorly correlated in the southern hemisphere (R < 0.6). Land dominated the interannual variability (IAV) in the northern hemisphere, and biomass burning in particular accounted for much of the strong positive CO2 growth anomaly observed during the 1997–1998 El Nino event. The signals in atmospheric CO2 from the terrestrial biosphere extended throughout the southern hemisphere, but oceanic fluxes also exerted a strong influence there, accounting for roughly half of the IAV at many extratropical stations. However, the modeled ocean tracer was generally uncorrelated with observations in either hemisphere from 1979–2004, except during the weak El Nino/post-Pinatubo period of the early 1990s. During that time, model results suggested that the ocean may have accounted for 20–25% of the observed slowdown in the atmospheric CO2 growth rate


Global Biogeochemical Cycles | 2013

North-South asymmetry in the modeled phytoplankton community response to climate change over the 21st century

Irina Marinov; Scott C. Doney; Ivan D. Lima; Keith Lindsay; J. K. Moore; N. Mahowald

Here we analyze the impact of projected climate change on plankton ecology in all major ocean biomes over the 21st century, using a multidecade (1880–2090) experiment conducted with the Community Climate System Model (CCSM-3.1) coupled ocean-atmosphere-land-sea ice model. The climate response differs fundamentally in the Northern and Southern Hemispheres for diatom and small phytoplankton biomass and consequently for total biomass, primary, and export production. Increasing vertical stratification in the Northern Hemisphere oceans decreases the nutrient supply to the ocean surface. Resulting decreases in diatom and small phytoplankton biomass together with a relative shift from diatoms to small phytoplankton in the Northern Hemisphere result in decreases in the total primary and export production and export ratio, and a shift to a more oligotrophic, more efficiently recycled, lower biomass euphotic layer. By contrast, temperature and stratification increases are smaller in the Southern compared to the Northern Hemisphere. Additionally, a southward shift and increase in strength of the Southern Ocean westerlies act against increasing temperature and freshwater fluxes to destratify the water-column. The wind-driven, poleward shift in the Southern Ocean subpolar-subtropical boundary results in a poleward shift and increase in the frontal diatom bloom. This boundary shift, localized increases in iron supply, and the direct impact of warming temperatures on phytoplankton growth result in diatom increases in the Southern Hemisphere. An increase in diatoms and decrease in small phytoplankton partly compensate such that while total production and the efficiency of organic matter export to the deep ocean increase, total Southern Hemisphere biomass does not change substantially. The impact of ecological shifts on the global carbon cycle is complex and varies across ecological biomes, with Northern and Southern Hemisphere effects on the biological production and export partially compensating. The net result of climate change is a small Northern Hemisphere-driven decrease in total primary production and efficiency of organic matter export to the deep ocean.


Global Biogeochemical Cycles | 2013

Reply to a comment by Stephen M. Chiswell on: “Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom” by M. J. Behrenfeld et al. (2013)

Michael J. Behrenfeld; Scott C. Doney; Ivan D. Lima; Emmanuel Boss; David A. Siegel

Author Posting.


Journal of the Acoustical Society of America | 2010

Modeling deep ocean shipping noise in varying acidity conditions

Ilya A. Udovydchenkov; Timothy F. Duda; Scott C. Doney; Ivan D. Lima

Possible future changes of ambient shipping noise at 0.1-1 kHz in the North Pacific caused by changing seawater chemistry conditions are analyzed with a simplified propagation model. Probable decreases of pH would cause meaningful reduction of the sound absorption coefficient in near-surface ocean water for these frequencies. The results show that a few decibels of increase may occur in 100 years in some very quiet areas very far from noise sources, with small effects closer to noise sources. The use of ray physics allows sound energy attenuated via volume absorption and by the seafloor to be compared.


PLOS ONE | 2018

Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate

Karthik Balaguru; Scott C. Doney; Laura Bianucci; Philip J. Rasch; L. Ruby Leung; Jin-Ho Yoon; Ivan D. Lima

Wintertime convective mixing plays a pivotal role in the sub-polar North Atlantic spring phytoplankton blooms by favoring phytoplankton survival in the competition between light-dependent production and losses due to grazing and gravitational settling. We use satellite and ocean reanalyses to show that the area-averaged maximum winter mixed layer depth is positively correlated with April chlorophyll concentration in the northern Labrador Sea. A simple theoretical framework is developed to understand the relative roles of winter/spring convection and gravitational sedimentation in spring blooms in this region. Combining climate model simulations that project a weakening of wintertime Labrador Sea convection from Arctic sea ice melt with our framework suggests a potentially significant reduction in the initial fall phytoplankton population that survive the winter to seed the region’s spring bloom by the end of the 21st century.


Earth System Science Data | 2014

Global carbon budget 2014

C. Le Quéré; R. Moriarty; Robbie M. Andrew; Josep G. Canadell; Stephen Sitch; Jan Ivar Korsbakken; Pierre Friedlingstein; Glen P. Peters; Robert J. Andres; Tom Boden; R. A. Houghton; Joanna Isobel House; Ralph F. Keeling; Pieter P. Tans; Almut Arneth; Dorothee C. E. Bakker; Leticia Barbero; Laurent Bopp; F. Chevallier; L P Chini; Philippe Ciais; M. Fader; Richard A. Feely; T. Gkritzalis; Ian Harris; Judith Hauck; Tatiana Ilyina; Atul K. Jain; Etsushi Kato; Vassilis Kitidis

Collaboration


Dive into the Ivan D. Lima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Dunne

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurent Bopp

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Le Quéré

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A. Feely

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge