Ivan J. Oresnik
University of Manitoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivan J. Oresnik.
Molecular Microbiology | 2001
Ivan J. Oresnik; Carol L. Ladner; Raymond J. Turner
The transport and targeting of a number of periplasmic proteins is carried out by the Sec‐independent Mtt (also referred to as Tat) protein translocase. Proteins using this translocase have a distinct twin‐arginine‐containing leader. We hypothesized that specific leader‐binding proteins exist to escort proteins to the translocase complex. A fusion was constructed with the twin‐arginine leader from dimethyl sulphoxide (DMSO) reductase, subunit DmsA, to the N‐terminus of glutathione‐S‐transferase. This leader fusion was bound to a glutathione affinity column through which an Escherichia coli anaerobic cell‐free extract was passed. Proteins that bound to the leader were then separated and identified by N‐terminal sequencing, which identified DnaK and a protein originating from the uncharacterized reading frame ynfI. This gene has been designated dmsD based on the findings presented in this paper. DmsD was purified as a His6 fusion and was shown to interact with preprotein forms of DmsA and TorA (trimethyl amine N‐oxide reductase). A strain carrying a dmsD knock‐out mutation showed a loss of anaerobic growth on glycerol–DMSO medium and reduced growth on glycerol–fumarate medium. This work suggests that DmsD is a twin‐arginine leader‐binding protein.
Journal of Bacteriology | 2000
Ivan J. Oresnik; Shu-Lin Liu; Christopher K. Yost; Michael F. Hynes
We report the curing of the 1,360-kb megaplasmid pRme2011a from Sinorhizobium meliloti strain Rm2011. With a positive selection strategy that utilized Tn5B12-S containing the sacB gene, we were able to cure this replicon by successive rounds of selecting for deletion formation in vivo. Subsequent Southern blot, Eckhardt gel, and pulsed-field gel electrophoresis analyses were consistent with the hypothesis that the resultant strain was indeed missing pRme2011a. The cured derivative grew as well as the wild-type strain in both complex and defined media but was unable to use a number of substrates as a sole source of carbon on defined media.
Molecular Plant-microbe Interactions | 1998
Ivan J. Oresnik; Laurie A. Pacarynuk; Shelley A. P. O'Brien; Christopher K. Yost; Michael F. Hynes
Cosmids carrying genes involved in utilization of rhamnose, sorbitol, and adonitol were isolated from a genomic library of Rhizobium leguminosarum by complementation of plasmid-cured derivatives of strain Rlt100 that were unable to grow on these carbon sources. Transposon mutagenesis was used to identify regions of each cosmid necessary for catabolism of the respective carbon source; partial DNA sequencing, as well as analysis of gene fusions created with transposon Tn5-B20, helped to determine the orientation and possible function of genes required for growth on the three substrates. Representative Tn5 insertions in the cosmids were recombined into the wild-type strain Rlt100 by gene replacement to generate isogenic strains unable to use either rhamnose, sorbitol, or adonitol. These strains were tested for their nodulation competitiveness compared with Rlt100 in co-inoculation experiments on clover plants. While sorbitol and adonitol catabolic mutants were unaltered in their competitive behavior, the nod...
Electrophoresis | 2000
Hancai Chen; Jody Higgins; Ivan J. Oresnik; Michael F. Hynes; Siria H. A. Natera; Michael A. Djordjevic; Jeremy J. Weinman; Barry G. Rolfe
Sinorhizobium meliloti was studied by proteomic analysis to investigate the contribution made by plasmid‐encoded functions on the intracellular regulation of this bacterium. Protein profiles of strain 2011 were compared with those from its mutant strains which were either cured of their pRme2011a (also called pSyma) plasmid (strain 818), or contained an extensive deletion of this plasmid (strain SmA146). Plasmid pSyma contains the nodulation and nitrogen fixation genes and is 1.4 Mbp with an estimated coding potential of 1400 proteins. However, under the growth conditions used we could detect 60 differences between the parent strain and its pSyma‐cured derivative, strain 818. While the majority of these differences were due to regulatory changes, such as up‐ and downregulation, some proteins were totally missing in some strains. These 60 proteins were classified into 21 subgroups, A to U, based on their measured protein levels when the cells were grown in the presence or absence of luteolin. Comparisons were made between the different strains to assess the possible interactions of the different proteins of the subgroups and plasmid pSyma. These results suggest that pSyma has a role in the regulation of the expression of genes from the other replicons (3.5 Mbp chromosome and the 1.7 Mbp pSymB plasmid) present in the S. meliloti cells. Proteome analysis provides a sensitive tool to examine the functional organisation of the S. meliloti genome and the intracellular gene interactions between replicons and will provide a powerful analytical tool to complement the genome sequencing of strain 1021.
Journal of Bacteriology | 2004
Jason S. Richardson; Michael F. Hynes; Ivan J. Oresnik
Rhizobium leguminosarum bv. trifolii mutants unable to catabolize the methyl-pentose rhamnose are unable to compete effectively for nodule occupancy. In this work we show that the locus responsible for the transport and catabolism of rhamnose spans 10,959 bp. Mutations in this region were generated by transposon mutagenesis, and representative mutants were characterized. The locus contains genes coding for an ABC-type transporter, a putative dehydrogenase, a probable isomerase, and a sugar kinase necessary for the transport and subsequent catabolism of rhamnose. The regulation of these genes, which are inducible by rhamnose, is carried out in part by a DeoR-type negative regulator (RhaR) that is encoded within the same transcript as the ABC-type transporter but is separated from the structural genes encoding the transporter by a terminator-like sequence. RNA dot blot analysis demonstrated that this terminator-like sequence is correlated with transcript attenuation only under noninducing conditions. Transport assays utilizing tritiated rhamnose demonstrated that uptake of rhamnose was inducible and dependent upon the presence of the ABC transporter at this locus. Phenotypic analyses of representative mutants from this locus provide genetic evidence that the catabolism of rhamnose differs from previously described methyl-pentose catabolic pathways.
Microbiology | 2012
Hao Ding; Cynthia B. Yip; Barney A. Geddes; Ivan J. Oresnik; Michael F. Hynes
Plasmid curing has shown that the ability to use glycerol as a carbon source is plasmid-encoded in Rhizobium leguminosarum. We isolated the locus responsible for glycerol utilization from plasmid pRleVF39c in R. leguminosarum bv. viciae VF39. This region was analyzed by DNA sequencing and mutagenesis. The locus encompasses a gene encoding GlpR (a DeoR regulator), genes encoding an ABC transporter, and genes glpK and glpD, encoding a kinase and dehydrogenase, respectively. All the genes except the regulatory gene glpR were organized into a single operon, and were required for growth on glycerol. The glp operon was strongly induced by both glycerol and glycerol 3-phosphate, as well as by pea seed exudate. GlpR repressed the operon in the absence of inducer. Mutation of genes encoding the ABC transporter abolished all transport of glycerol in transport assays using radiolabelled glycerol. This confirms that, unlike in other organisms such as Escherichia coli and Pseudomonas aeruginosa, which use facilitated diffusion, glycerol uptake occurs by an active process in R. leguminosarum. Since the glp locus is highly conserved in all sequenced R. leguminosarum and Rhizobium etli strains, as well as in Sinorhizobium spp. and Agrobacterium spp. and other alphaproteobacteria, this process for glycerol uptake is probably widespread. Mutants unable to use glycerol were deficient in competitiveness for nodulation of peas compared with the wild-type, suggesting that glycerol catabolism confers an advantage upon the bacterium in the rhizosphere or in the infection thread.
Journal of Bacteriology | 2007
Nathan J. Poysti; Ivan J. Oresnik
A Tn5 mutant strain of Sinorhizobium meliloti with an insertion in tpiA (systematic identifier SMc01023), a putative triose phosphate isomerase (TPI)-encoding gene, was isolated. The tpiA mutant grew more slowly than the wild type on rhamnose and did not grow with glycerol as a sole carbon source. The genome of S. meliloti wild-type Rm1021 contains a second predicted TPI-encoding gene, tpiB (SMc01614). We have constructed mutations and confirmed that both genes encode functional TPI enzymes. tpiA appears to be constitutively expressed and provides the primary TPI activity for central metabolism. tpiB has been shown to be required for growth with erythritol. TpiB activity is induced by growth with erythritol; however, basal levels of TpiB activity present in tpiA mutants allow for growth with gluconeogenic carbon sources. Although tpiA mutants can be complemented by tpiB, tpiA cannot substitute for mutations in tpiB with respect to erythritol catabolism. Mutations in tpiA or tpiB alone do not cause symbiotic defects; however, mutations in both tpiA and tpiB caused reduced symbiotic nitrogen fixation.
Journal of Bacteriology | 2008
Brad S. Pickering; Ivan J. Oresnik
It was found that S. meliloti strain SmA818, which is cured of pSymA, could not grow on defined medium containing only formate and bicarbonate as carbon sources. Growth experiments showed that Rm1021 was capable of formate/bicarbonate-dependent growth, suggesting that it was capable of autotrophic-type growth. The annotated genome of S. meliloti Rm1021 contains three formate dehydrogenase genes. A systematic disruption of each of the three formate dehydrogenase genes, as well as the genes encoding determinants of the Calvin-Benson-Bassham, cycle was carried out to determine which of these determinants played a role in growth on this defined medium. The results showed that S. meliloti is capable of formate-dependent autotrophic growth. Formate-dependent autotrophic growth is dependent on the presence of the chromosomally located fdsABCDG operon, as well as the cbb operon carried by pSymB. Growth was also dependent on the presence of either of the two triose-phosphate isomerase genes (tpiA or tpiB) that are found in the genome. In addition, it was found that fdoGHI carried by pSymA encodes a formate dehydrogenase that allows Rm1021 to carry out formate-dependent respiration. Taken together, the data allow us to present a model of how S. meliloti can grow on defined medium containing only formate and bicarbonate as carbon sources.
Canadian Journal of Microbiology | 2014
Barney A. Geddes; Ivan J. Oresnik
A large proportion of genes within a genome encode proteins that play a role in metabolism. The Alphaproteobacteria are a ubiquitous group of bacteria that play a major role in a number of environments. For well over 50 years, carbon metabolism in Rhizobium has been studied at biochemical and genetic levels. Here, we review the pre- and post-genomics literature of the metabolism of the alphaproteobacterium Sinorhizobium meliloti. This review provides an overview of carbon metabolism that is useful to readers interested in this organism and to those working on other organisms that do not follow other model system paradigms.
Microbiology | 2010
Barney A. Geddes; Brad S. Pickering; Nathan J. Poysti; Heather Collins; Harry Yudistira; Ivan J. Oresnik
In this work we have genetically defined an erythritol utilization locus in Sinorhizobium meliloti. A cosmid containing the locus was isolated by complementation of a transposon mutant and was subsequently mutagenized using Tn5 : : B20. The locus was found to consist of five transcriptional units, each of which was necessary for the utilization of erythritol. Genetic complementation experiments using genes putatively annotated as erythritol catabolic genes clearly showed that, of the 17 genes at this locus, six genes are not necessary for the utilization of erythritol as a sole carbon source. The remaining genes encode EryA, EryB, EryC and TpiB as well as an uncharacterized ABC-type transporter. Transport experiments using labelled erythritol showed that components of the ABC transporter are necessary for the uptake of erythritol. The locus also contains two regulators: EryD, a SorC class regulator, and SMc01615, a DeoR class regulator. Quantitative RT-PCR experiments showed that each of these regulators negatively regulates its own transcription. In addition, induction of the erythritol locus was dependent upon EryD and a product of erythritol catabolism. Further characterization of polar mutations revealed that in addition to erythritol, the locus contains determinants for adonitol and l-arabitol utilization. The context of the mutations suggests that the locus is important for both the transport and catabolism of adonitol and l-arabitol.