Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirit A. Bhatt is active.

Publication


Featured researches published by Kirit A. Bhatt.


American Journal of Pathology | 2004

Topical Vascular Endothelial Growth Factor Accelerates Diabetic Wound Healing through Increased Angiogenesis and by Mobilizing and Recruiting Bone Marrow-Derived Cells

Robert D. Galiano; Oren M. Tepper; Catherine R. Pelo; Kirit A. Bhatt; Matthew J. Callaghan; Nicholas Bastidas; Stuart Bunting; Hope Steinmetz; Geoffrey C. Gurtner

Diminished production of vascular endothelial growth factor (VEGF) and decreased angiogenesis are thought to contribute to impaired tissue repair in diabetic patients. We examined whether recombinant human VEGF(165) protein would reverse the impaired wound healing phenotype in genetically diabetic mice. Paired full-thickness skin wounds on the dorsum of db/db mice received 20 microg of VEGF every other day for five doses to one wound and vehicle (phosphate-buffered saline) to the other. We demonstrate significantly accelerated repair in VEGF-treated wounds with an average time to resurfacing of 12 days versus 25 days in untreated mice. VEGF-treated wounds were characterized by an early leaky, malformed vasculature followed by abundant granulation tissue deposition. The VEGF-treated wounds demonstrated increased epithelialization, increased matrix deposition, and enhanced cellular proliferation, as assessed by uptake of 5-bromodeoxyuridine. Analysis of gene expression by real-time reverse transcriptase-polymerase chain reaction demonstrates a significant up-regulation of platelet-derived growth factor-B and fibroblast growth factor-2 in VEGF-treated wounds, which corresponds with the increased granulation tissue in these wounds. These experiments also demonstrated an increase in the rate of repair of the contralateral phosphate-buffered saline-treated wound when compared to wounds in diabetic mice never exposed to VEGF (18 days versus 25 days), suggesting that topical VEGF had a systemic effect. We observed increased numbers of circulating VEGFR2(+)/CD11b(-) cells in the VEGF-treated mice by fluorescence-activated cell sorting analysis, which likely represent an endothelial precursor population. In diabetic mice with bone marrow replaced by that of tie2/lacZ mice we demonstrate that the local recruitment of bone marrow-derived endothelial lineage lacZ+ cells was augmented by topical VEGF. We conclude that topical VEGF is able to improve wound healing by locally up-regulating growth factors important for tissue repair and by systemically mobilizing bone marrow-derived cells, including a population that contributes to blood vessel formation, and recruiting these cells to the local wound environment where they are able to accelerate repair. Thus, VEGF therapy may be useful in the treatment of diabetic complications characterized by impaired neovascularization.


The FASEB Journal | 2007

Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis

Shahram Aarabi; Kirit A. Bhatt; Yubin Shi; Josemaria Paterno; Edward I. Chang; Shang A. Loh; Jeffrey W. Holmes; Michael T. Longaker; Herman Yee; Geoffrey C. Gurtner

Hypertrophic scars occur following cutaneous wounding and result in severe functional and esthetic defects. The pathophysiology of this process remains unknown. Here, we demonstrate for the first time that mechanical stress applied to a healing wound is sufficient to produce hypertrophic scars in mice. The resulting scars are histopathologically identical to human hypertrophic scars and persist for more than six months following a brief (one‐week) period of augmented mechanical stress during the proliferative phase of wound healing. Resulting scars are structurally identical to human hypertrophic scars and showed dramatic increases in volume (20‐fold) and cellular density (20‐fold). The increased cellularity is accompanied by a four‐fold decrease in cellular apoptosis and increased activation of the prosurvival marker Akt. To clarify the importance of apoptosis in hypertrophic scar formation, we examine the effects of mechanical loading on cutaneous wounds of animals with altered pathways of cellular apoptosis. In p53‐null mice, with down‐regulated cellular apoptosis, we observe significantly greater scar hypertrophy and cellular density. Conversely, scar hypertrophy and cellular density are significantly reduced in proapoptotic BclII‐null mice. We conclude that mechanical loading early in the prolifer‐ative phase of wound healing produces hypertrophic scars by inhibiting cellular apoptosis through an Akt‐dependent mechanism.—Aarabi S., Bhatt, K. A., Shi, Y., Paterno, J., Chang, E. I., Loh, S. A., Holmes, J. W., Longaker, M. T., Yee, H., Gurtner G. C. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J. 21, 3250–3261 (2007)


Annals of Surgery | 2011

Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies.

Geoffrey C. Gurtner; Reinhold H. Dauskardt; Victor W. Wong; Kirit A. Bhatt; Kenneth S. Wu; Ivan N. Vial; Karine Padois; Joshua Korman; Michael T. Longaker

Objective: To test the hypothesis that the mechanical environment of cutaneous wounds can control scar formation. Background: Mechanical forces have been recognized to modulate myriad biologic processes, but the role of physical force in scar formation remains unclear. Furthermore, the therapeutic benefits of offloading cutaneous wounds with a device have not been rigorously tested. Methods: A mechanomodulating polymer device was utilized to manipulate the mechanical environment of closed cutaneous wounds in red Duroc swine. After 8 weeks, wounds subjected to different mechanical stress states underwent immunohistochemical analysis for fibrotic markers. In a phase I clinical study, 9 human patients undergoing elective abdominal surgery were treated postoperatively with a stress-shielding polymer on one side whereas the other side was treated as standard of care. Professional photographs were taken between 8 and 12 months postsurgery and evaluated using a visual analog scale by lay and professional panels. This study is registered with ClinicalTrials.gov, number NCT00766727. Results: Stress shielding of swine incisions reduced histologic scar area by 6- and 9-fold compared to control and elevated stress states, respectively (P < 0.01 for both) and dramatically decreased the histologic expression of profibrotic markers. Closure of high-tension wounds induced human-like scar formation in the red Duroc, a phenotype effectively mitigated with stress shielding of wounds. In the study on humans, stress shielding of abdominal incisions significantly improved scar appearance (P = 0.004) compared with within-patient controls. Conclusions: These results indicate that mechanical manipulation of the wound environment with a dynamic stress-shielding polymer device can significantly reduce scar formation.


Plastic and Reconstructive Surgery | 2006

Skin Graft Vascularization Involves Precisely Regulated Regression and Replacement of Endothelial Cells through Both Angiogenesis and Vasculogenesis

Jennifer M. Capla; Daniel J. Ceradini; Oren M. Tepper; Matthew J. Callaghan; Kirit A. Bhatt; Robert D. Galiano; Jamie P. Levine; Geoffrey C. Gurtner

Background: Long-term survival of a skin graft is dependent on eventual revascularization. The authors’ aim in the present study was to determine whether skin graft vascularization occurs by (1) simple reconnection of vessels, (2) ingrowth of recipient vasculature, (3) outgrowth of donor-derived vessels, and/or (4) recruitment of bone marrow–derived endothelial progenitor cells. Methods: Full-thickness skin grafts (1 × 1 cm) were transferred between wild-type FVB/N mice (n = 20) and transgenic tie2/lacZ mice (n = 20), where lacZ expression is controlled by the endothelial specific tie2 promoter, allowing differentiation of recipient and donor endothelial cells. The contribution of endothelial progenitor cells to skin graft neovascularization was determined using a bone marrow transplant model where tie2/lacZ bone marrow was transplanted into wild-type mice (n = 20). Results: Vascular regression in the graft was observed at the periphery starting on day 3 and moving centrally through day 21, sparing graft vessels in the absolute center of the graft. At the same time, vascular ingrowth occurred from the wound bed to replace the regressing vessels. Furthermore, bone marrow–derived endothelial progenitor cells contributed to these new vessels starting as early as day 7. Surprisingly, the contribution of bone marrow–derived vessels to the overall process was approximately 15 to 20 percent of new endothelial cells. Conclusions: Replacement of the donor graft vasculature by endothelial and endothelial progenitor cells from the recipient along preexisting channels is the predominant mechanism for skin graft revascularization. This mechanism is likely similar for all nonvascularized free grafts and suggests novel strategies for optimizing the vascularization of tissue constructs engineered in vitro.


Annals of Plastic Surgery | 2004

Bone morphogenic protein-2 gene therapy for mandibular distraction osteogenesis

Russell L. Ashinoff; Curtis L. Cetrulo; Robert D. Galiano; Michael Dobryansky; Kirit A. Bhatt; Daniel J. Ceradini; Joseph Michaels; Joseph G. McCarthy; Geoffrey C. Gurtner; George A. Csank

Abstract:Distraction osteogenesis (DO) requires a long consolidation period and has a low but real failure rate. Bone morphogenic proteins (BMPs) accelerate bone deposition in fractures and critical-sized bone defects, but their effects on mandibular DO are unknown. We investigated the effect of local delivery of adenovirus containing the gene for BMP-2 (Adbmp-2) on mandibular DO in a rat model. Rats (n = 54) were distracted to 3 mm over 6 days. At the start of consolidation (POD 10), Adbmp-2 or adenovirus containing the lacZgene (AdlacZ) was injected directly into the distraction zone. After 1, 2, and 4 weeks of consolidation, mandibles were evaluated for amount of bone deposition. Adbmp-2-treated specimens demonstrated an increased amount of new bone formation by radiographic, histologic, and histomorphometric analysis. This study demonstrates that local, adenovirally–mediated delivery of BMP-2 can increase bone deposition during DO, potentially shortening consolidation and enhancing DO in poorly healing mandibles, such as occurs postirradiation.


Lymphatic Research and Biology | 2003

Increased circulating AC133+ CD34+ endothelial progenitor cells in children with hemangioma.

Mark E. Kleinman; Oren M. Tepper; Jennifer M. Capla; Kirit A. Bhatt; Daniel J. Ceradini; Robert D. Galiano; Francine Blei; Jamie P. Levine; Geoffrey C. Gurtner

UNLABELLED Hemangioma is the most common soft-tissue tumor of infancy. Despite the frequency of these vascular tumors, the origin of hemangioma-endothelial cells is unknown. Circulating endothelial progenitor cells (EPCs) have recently been identified as vascular stem cells with the capacity to contribute to postnatal vascular development. We have attempted to determine whether circulating EPCs are increased in hemangioma patients and thereby provide insight into the role of EPCs in hemangioma growth. METHODS AND RESULTS Peripheral blood mononuclear cells (PBMCs) were isolated from hemangioma patients undergoing surgical resection (N = 5) and from age-matched controls (N = 5) undergoing strabismus correction surgery. PBMCs were stained with fluorescent-labeled antibodies for AC133, CD34, and VEGFR2/KDR. Fluorescent-labeled isotype antibodies served as negative controls. Histologic sections of surgical specimens were stained with the specific hemangioma markers Glut1, CD32, and merosin, to confirm the diagnosis of common hemangioma of infancy. EPCs harvested from healthy adult volunteers were stained with Glut1, CD32, and merosin, to assess whether cultured EPCs express known hemangioma markers. Hemangioma patients had a 15-fold increase in the number of circulating CD34 AC133 dual-staining cells relative to controls (0.78+/-0.14% vs.0.052+/-0.017%, respectively). Similarly, the number of PBMCs that stained positively for both CD34 and KDR was also increased in hemangioma patients (0.49+/-0.074% vs. 0.19+/-0.041% in controls). Cultured EPCs stained positively for the known hemangioma markers Glut1, CD32, merosin. CONCLUSIONS This is the first study to suggest a role for EPCs in the pathogenesis of hemangioma. Our results imply that increased levels of circulating EPCs may contribute to the formation of this vascular tumor.


Wound Repair and Regeneration | 2005

Topical vascular endothelial growth factor reverses delayed wound healing secondary to angiogenesis inhibitor administration.

Joseph Michaels; Michael Dobryansky; Robert D. Galiano; Kirit A. Bhatt; Russell L. Ashinoff; Daniel J. Ceradini; Geoffrey C. Gurtner

The prevention of new blood vessel growth is an increasingly attractive strategy to limit tumor growth. However, it remains unclear whether anti‐angiogenesis approaches will impair wound healing, a process thought to be angiogenesis dependent. Results of previous studies differ as to whether angiogenesis inhibitors delay wound healing. We evaluated whether endostatin at tumor‐inhibiting doses delayed excisional wound closure. C57/BL6J mice were treated with endostatin or phosphate‐buffered solution 3 days prior to the creation of two full‐thickness wounds on the dorsum. Endostatin was administered daily until wound closure was complete. A third group received endostatin, but also had daily topical vascular endothelial growth factor applied locally to the wound. Wound area was measured daily and the wounds were analyzed for granulation tissue formation, epithelial gap, and wound vascularity. Endostatin‐treated mice showed a significant delay in wound healing. Granulation tissue formation and wound vascularity were significantly decreased, but reepithelialization was not effected. Topical vascular endothelial growth factor application to wounds in endostatin‐treated mice resulted in increased granulation tissue formation, increased wound vascularity, and wound closure approaching that of control mice. This study shows that the angiogenesis inhibitor endostatin delays wound healing and that topical vascular endothelial growth factor is effective in counteracting this effect.


Annals of Plastic Surgery | 2005

Mechanical strain alters gene expression in an in vitro model of hypertrophic scarring

Christopher A. Derderian; Nicholas Bastidas; Oren Z. Lerman; Kirit A. Bhatt; Shin’e Lin; Jeremy Voss; Jeffrey W. Holmes; Jamie P. Levine; Geoffrey C. Gurtner

Fibroblasts represent a highly mechanoresponsive cell type known to play key roles in normal and pathologic processes such as wound healing, joint contracture, and hypertrophic scarring. In this study, we used a novel fibroblast-populated collagen lattice (FPCL) isometric tension model, allowing us to apply graded biaxial loads to dermal fibroblasts in a 3-dimensional matrix. Cell morphology demonstrated dose-dependent transition from round cells lacking stress fibers in nonloaded lattices to a broad, elongated morphology with prominent actin stress fibers in 800-mg-loaded lattices. Using quantitative real-time RT-PCR, a dose dependent induction of both collagen-1 and collagen-3 mRNA up to 2.8- and 3-fold, respectively, as well as a 2.5-fold induction of MMP-1 (collagenase) over unloaded FPCLs was observed. Quantitative expression of the proapoptotic gene Bax was down-regulated over 4-fold in mechanically strained FPCLs. These results suggest that mechanical strain up-regulates matrix remodeling genes and down-regulates normal cellular apoptosis, resulting in more cells, each of which produces more matrix. This “double burden” may underlie the pathophysiology of hypertrophic scars and other fibrotic processes in vivo.


Wound Repair and Regeneration | 2011

Akt-mediated mechanotransduction in murine fibroblasts during hypertrophic scar formation.

Josemaria Paterno; Ivan N. Vial; Victor W. Wong; Kristine C. Rustad; Michael Sorkin; Yubin Shi; Kirit A. Bhatt; Hariharan Thangarajah; Jason P. Glotzbach; Geoffrey C. Gurtner

Although numerous factors are implicated in skin fibrosis, the exact pathophysiology of hypertrophic scarring remains unknown. We recently demonstrated that mechanical force initiates hypertrophic scar formation in a murine model, potentially enhancing cellular survival through Akt. Here, we specifically examined Akt‐mediated mechanotransduction in fibroblasts using both strain culture systems and our murine scar model. In vitro, static strain increased fibroblast motility, an effect blocked by wortmannin (a phosphoinositide‐3‐kinase/Akt inhibitor). We also demonstrated that high‐frequency cyclic strain was more effective at inducing Akt phosphorylation than low frequency or static strain. In vivo, Akt phosphorylation was induced by mechanical loading of dermal fibroblasts in both unwounded and wounded murine skin. Mechanically loaded scars also exhibited strong expression of α‐smooth muscle actin, a putative marker of pathologic scar formation. In vivo inhibition of Akt increased apoptosis but did not significantly abrogate hypertrophic scar development. These data suggest that although Akt signaling is activated in fibroblasts during mechanical loading of skin, this is not the critical pathway in hypertrophic scar formation. Future studies are needed to fully elucidate the critical mechanotransduction components and pathways which activate skin fibrosis.


Plastic and Reconstructive Surgery | 2005

Stem cells and distraction osteogenesis: Endothelial progenitor cells home to the ischemic generate in activation and consolidation

Curtis L. Cetrulo; Kevin R. Knox; Daniel Brown; Russell L. Ashinoff; Michael Dobryansky; Daniel J. Ceradini; Jennifer M. Capla; Edward I. Chang; Kirit A. Bhatt; Joseph G. McCarthy; Geoffrey C. Gurtner

Background: Ischemia is a limiting factor during distraction osteogenesis. The authors sought to determine the extent of ischemia in the distraction zone and whether endothelial progenitor cells home to the distraction zone and participate in local vasculogenesis. Methods: Laser Doppler imaging was used to assess the extent of blood flow in the distraction zone in gradually distracted, immediately distracted, and osteotomized rat mandibles during activation and consolidation. Animals (n = 50; 25 rats with unilateral gradual distraction and contralateral osteotomy as an internal control, and 25 rats with unilateral immediate distraction) were examined on postoperative days 4, 6, and 8 of activation, and after 1 and 2 weeks of consolidation. Endothelial progenitor cells isolated from human peripheral blood were labeled with fluorescent DiI dye, and 0.5 × 106 cells were injected intra-arterially under direct vision into each carotid artery at the start of activation in nude rats (n = 18) that then underwent the distraction protocol outlined above. Results: Doppler flow analysis demonstrated relative ischemia during the activation period in the distraction osteogenesis group and increased blood flow in the osteotomized control group as compared with flow in a normal hemimandible [normal, 1 (standardized); distraction osteogenesis, 0.58 ± 0.05; control, 2.58 ± 0.21; p < 0.05 for both results]. We observed a significantly increased endothelial progenitor cell population at the generate site versus controls at midactivation and at 1 and 2 weeks of consolidation [25 ± 1.9 versus 1 ± 0.3 DiI-positive cells per high-power field (p < 0.05), 124 ± 21 versus 8 ± 4 DiI-positive cells per high-power field (p < 0.05), and 106 ± 18 versus 9 ± 3 DiI-positive cells per high-power field (p < 0.05), respectively]. Conclusions: These data suggest that the distraction zone becomes relatively ischemic during activation and that endothelial progenitor cells home to the ischemic generate site during the activation phase and remain during the consolidation phase. Selective expansion of these stem cells may be useful in overcoming ischemic limitations of distraction osteogenesis. Moreover, their homing capability may be used to effect site-specific transgene delivery to the generate.

Collaboration


Dive into the Kirit A. Bhatt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge