Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivo M. B. Francischetti is active.

Publication


Featured researches published by Ivo M. B. Francischetti.


Cell | 2008

Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer

Simon N. Waddington; John H. McVey; David Bhella; Alan L. Parker; Kristeen Barker; Hideko Atoda; Rebecca Pink; Suzanne M. K. Buckley; Jenny A. Greig; Laura Denby; Jerome Custers; Takashi Morita; Ivo M. B. Francischetti; Robson Q. Monteiro; Dan H. Barouch; Nico van Rooijen; Claudio Napoli; Menzo Jans Emco Havenga; Stuart A. Nicklin; Andrew H. Baker

Adenoviruses are used extensively as gene transfer agents, both experimentally and clinically. However, targeting of liver cells by adenoviruses compromises their potential efficacy. In cell culture, the adenovirus serotype 5 fiber protein engages the coxsackievirus and adenovirus receptor (CAR) to bind cells. Paradoxically, following intravascular delivery, CAR is not used for liver transduction, implicating alternate pathways. Recently, we demonstrated that coagulation factor (F)X directly binds adenovirus leading to liver infection. Here, we show that FX binds to the Ad5 hexon, not fiber, via an interaction between the FX Gla domain and hypervariable regions of the hexon surface. Binding occurs in multiple human adenovirus serotypes. Liver infection by the FX-Ad5 complex is mediated through a heparin-binding exosite in the FX serine protease domain. This study reveals an unanticipated function for hexon in mediating liver gene transfer in vivo.


Frontiers in Bioscience | 2009

The role of saliva in tick feeding

Ivo M. B. Francischetti; Anderson Sá-Nunes; Ben J. Mans; Isabel Kinney Ferreira de Miranda Santos; José M. C. Ribeiro

When attempting to feed on their hosts, ticks face the problem of host hemostasis (the vertebrate mechanisms that prevent blood loss), inflammation (that can produce itching or pain and thus initiate defensive behavior on their hosts) and adaptive immunity (by way of both cellular and humoral responses). Against these barriers, ticks evolved a complex and sophisticated pharmacological armamentarium, consisting of bioactive lipids and proteins, to assist blood feeding. Recent progress in transcriptome research has uncovered that hard ticks have hundreds of different proteins expressed in their salivary glands, the majority of which have no known function, and include many novel protein families (e.g., their primary structure is unique to ticks). This review will address the vertebrate mechanisms of these barriers as a guide to identify the possible targets of these large numbers of known salivary proteins with unknown function. We additionally provide a supplemental Table that catalogues over 3,500 putative salivary proteins from various tick species, which might assist the scientific community in the process of functional identification of these unique proteins. This supplemental file is accessble fromhttp://exon.niaid.nih.gov/transcriptome/tick_review/Sup-Table-1.xls.gz.


Insect Biochemistry and Molecular Biology | 2003

Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito

Jesus G. Valenzuela; Ivo M. B. Francischetti; Van M. Pham; Mark Garfield; José M. C. Ribeiro

Anopheles stephensi is the main urban mosquito vector of malaria in the Indian subcontinent, and belongs to the same subgenus as Anopheles gambiae, the main malaria vector in Africa. Recently the genome and proteome sets of An. gambiae have been described, as well as several protein sequences expressed in its salivary glands, some of which had their expression confirmed by amino terminal sequencing. In this paper, we randomly sequenced a full-length cDNA library of An. stephensi and performed Edman degradation of polyvinylidene difluoride (PVDF)-transferred protein bands from salivary homogenates. Twelve of 13 proteins found by aminoterminal degradation were found among the cDNA clusters of the library. Thirty-three full-length novel cDNA sequences are reported, including a novel secreted galectin; the homologue of anophelin, a thrombin inhibitor; a novel trypsin/chymotrypsin inhibitor; an apyrase; a lipase; and several new members of the D7 protein family. Most of the novel proteins have no known function. Comparison of the putatively secreted and putatively housekeeping proteins of An. stephensi with An. gambiae proteins indicated that the salivary gland proteins are at a faster evolutionary pace. The possible role of these proteins in blood and sugar feeding by the mosquito is discussed. The electronic tables and supplemental material are available at http://www.ncbi.nlm.nih.gov/projects/Mosquito/A_stephensi_sialome/ .


Insect Biochemistry and Molecular Biology | 2002

Toward a description of the sialome of the adult female mosquito Aedes aegypti

Jesus G. Valenzuela; Van M. Pham; Mark Garfield; Ivo M. B. Francischetti; José M. C. Ribeiro

To describe the set of mRNA and protein expressed in the salivary glands (sialome) of Aedes aegypti mosquitoes, we randomly sequenced a full-length cDNA library of this insect and performed Edman degradation of PVDF-transferred protein bands from salivary homogenates. We found 238 cDNA clusters which contained those coding for 10 of the 11 proteins found by aminoterminal degradation. All six previously described salivary proteins were found in this library. Full-length sequences of 32 novel cDNA sequences are reported, one of which is the product of a transposable element. Among the 31 novel protein sequences are 4 additional members of the D7 protein family; 4 novel members of the antigen 5 family (a protein family not reported in Aedes); a novel serpin; a novel member of the 30-kDa allergen of Ae. Aegypti; a secreted calreticulin; 2 proteins similar to mammalian angiopoietins; adenosine deaminase; purine hydrolase; lysozyme; a C-type lectin; 3 serine proteases, including one with high similarity to Bombyx prophenoloxidase activating enzyme; 2 proteins related to invertebrate immunity; and several sequences that have no significant matches to known proteins. The possible role of these proteins in blood and sugar feeding by the mosquito is discussed.


The Journal of Experimental Biology | 2005

An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae

Bruno Arcà; Fabrizio Lombardo; Jesus G. Valenzuela; Ivo M. B. Francischetti; Osvaldo Marinotti; M. Coluzzi; José M. C. Ribeiro

SUMMARY Salivary glands of blood-sucking arthropods contain a variety of compounds that prevent platelet and clotting functions and modify inflammatory and immunological reactions in the vertebrate host. In mosquitoes, only the adult female takes blood meals, while both sexes take sugar meals. With the recent description of the Anopheles gambiae genome, and with a set of∼ 3000 expressed sequence tags from a salivary gland cDNA library from adult female mosquitoes, we attempted a comprehensive description of the salivary transcriptome of this most important vector of malaria transmission. In addition to many transcripts associated with housekeeping functions, we found an active transposable element, a set of Wolbachia-like proteins, several transcription factors, including Forkhead, Hairy and doublesex, extracellular matrix components and 71 genes coding for putative secreted proteins. Fourteen of these 71 proteins had matching Edman degradation sequences obtained from SDS-PAGE experiments. Overall, 33 transcripts are reported for the first time as coding for salivary proteins. The tissue and sex specificity of these protein-coding transcripts were analyzed by RT–PCR and microarray experiments for insight into their possible function. Notably, two gene products appeared to be differentially spliced in the adult female salivary glands, whereas 13 contigs matched predicted intronic regions and may include additional alternatively spliced transcripts. Most An. gambiae salivary proteins represent novel protein families of unknown function, potentially coding for pharmacologically or microbiologically active substances. Supplemental data to this work can be found at http://www.ncbi.nlm.nih.gov/projects/omes/index.html#Ag2.


Journal of Biological Chemistry | 2006

Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis

Michalis Kotsyfakis; Anderson Sá-Nunes; Ivo M. B. Francischetti; Thomas N. Mather; John F. Andersen; José M. C. Ribeiro

Here we report the ability of the tick Ixodes scapularis, the main vector of Lyme disease in the United States, to actively and specifically affect the host proteolytic activity in the sites of infestation through the release of a cystatin constituent of its saliva. The cystatin presence in the saliva was verified both biochemically and immunologically. We named the protein sialostatin L because of its inhibitory action against cathepsin L. We also show that the proteases it targets, although limited in number, have a prominent role in the proteolytic cascades that take place in the extracellular and intracellular environment. As a result, sialostatin L displays an antiinflammatory role and inhibits proliferation of cytotoxic T lymphocytes. Beyond unraveling another component accounting for the properties of tick saliva, contributing to feeding success and pathogen transmission, we describe a novel tool for studying the role of papain-like proteases in diverse biologic phenomena and a protein with numerous potential pharmaceutical applications.


Biochemical and Biophysical Research Communications | 2003

Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis.

Ivo M. B. Francischetti; Thomas N. Mather; José M. C. Ribeiro

The full-length sequence of tick salivary gland cDNA coding for a protein similar to metalloproteases (MP) of the reprolysin family is reported. The Ixodes scapularis MP is a 488 amino acid (aa) protein containing pre- and pro-enzyme domains, the zinc-binding motif HExxHxxGxxH common to metalloproteases, and a cysteine-rich region. In addition, the predicted amino-terminal sequences of I. scapularis MPs were found by Edman degradation of PVDF-transferred SDS/PAGE-separated tick saliva proteins, indicating that these putative enzymes are secreted. Furthermore, saliva has a metal-dependent proteolytic activity towards gelatin, fibrin(ogen), and fibronectin, but not collagen or laminin. Accordingly, I. scapularis saliva has a rather specific metalloprotease similar to the hemorrhagic proteases of snake venoms. This is the first description of such activity in tick saliva and its role in tick feeding and Borrelia transmission is discussed.


Journal of Immunology | 2007

Prostaglandin E2 Is a Major Inhibitor of Dendritic Cell Maturation and Function in Ixodes scapularis Saliva

Anderson Sá-Nunes; André Báfica; David A. Lucas; Thomas P. Conrads; Timothy D. Veenstra; John F. Andersen; Thomas N. Mather; José M. C. Ribeiro; Ivo M. B. Francischetti

Tick saliva is thought to contain a number of molecules that prevent host immune and inflammatory responses. In this study, the effects of Ixodes scapularis saliva on cytokine production by bone marrow-derived dendritic cells (DCs) from C57BL/6 mice stimulated by TLR-2, TLR-4, and TLR-9 ligands were studied. Saliva at remarkably diluted concentrations (<1/2000) promotes a dose-dependent inhibition of IL-12 and TNF-α production induced by all TLR ligands used. Using a combination of fractionation techniques (microcon filtration, molecular sieving, and reversed-phase chromatography), we unambiguously identified PGE2 as the salivary inhibitor of IL-12 and TNF-α production by DCs. Moreover, we have found that I. scapularis saliva (dilution 1/200; ∼10 nM PGE2) marginally inhibited LPS-induced CD40, but not CD80, CD86, or MHC class II expression. In addition, saliva significantly suppressed the ability of DCs to stimulate Ag-specific CD4+ T cell proliferation and IL-2 production. Notably, the effect of saliva on DC maturation and function was reproduced by comparable concentrations of standard PGE2. These findings indicate that PGE2 accounts for most inhibition of DC function observed with saliva in vitro. The role of salivary PGE2 in vector-host interaction and host immune modulation and inflammation in vivo is also discussed. This study is the first to identify molecularly a DC inhibitor from blood-sucking arthropods.


Microcirculation | 2008

Blood Coagulation, Inflammation, and Malaria

Ivo M. B. Francischetti; Karl B. Seydel; Robson Q. Monteiro

Malaria remains a highly prevalent disease in more than 90 countries and accounts for at least 1 million deaths every year. Plasmodium falciparum infection is often associated with a procoagulant tonus characterized by thrombocytopenia and activation of the coagulation cascade and fibrinolytic system; however, bleeding and hemorrhage are uncommon events, suggesting that a compensated state of blood coagulation activation occurs in malaria. This article (i) reviews the literature related to blood coagulation and malaria in a historic perspective, (ii) describes basic mechanisms of coagulation, anticoagulation, and fibrinolysis, (iii) explains the laboratory changes in acute and compensated disseminated intravascular coagulation (DIC), (iv) discusses the implications of tissue factor (TF) expression in the endothelium of P. falciparum infected patients, and (v) emphasizes the procoagulant role of parasitized red blood cells (RBCs) and activated platelets in the pathogenesis of malaria. This article also presents the Tissue Factor Model (TFM) for malaria pathogenesis, which places TF as the interface between sequestration, endothelial cell (EC) activation, blood coagulation disorder, and inflammation often associated with the disease. The relevance of the coagulation‐inflammation cycle for the multiorgan dysfunction and coma is discussed in the context of malaria pathogenesis.


Thrombosis and Haemostasis | 2004

Penthalaris, a novel recombinant five-Kunitz tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick vector of Lyme disease, Ixodes scapularis

Ivo M. B. Francischetti; Thomas N. Mather; José M. C. Ribeiro

Tick saliva is a rich source of molecules with antiinflammatory, antihemostatic and immunosupressive properties. In this paper, a novel tick salivary gland cDNA with sequence homology to tissue factor pathway inhibitor (TFPI) and coding for a protein called Penthalaris has been characterized from the Lyme disease vector, Ixodes scapularis. Penthalaris is structurally unique and distinct from TFPI or TFPI-like molecules described so far, including Ixolaris, NAPc2, TFPI-1 and TFPI-2. Penthalaris is a 308-amino-acid protein (35 kDa, pI 8.58) with 12 cysteine bridges and 5 tandem Kunitz domains. Recombinant Penthalaris was expressed in insect cells and shown to inhibit factor VIIa (FVIIa)/tissue factor(TF)-induced factor X (FX) activation with an IC50 of approximately 100 pM. Penthalaris tightly binds both zymogen FX and enzyme FXa (exosite), but not FVIIa, as demonstrated by column gel-filtration chromatography. At high concentrations, Penthalaris attenuates FVIIa/TF-induced chromogenic substrate (S2288) hydrolysis and FIX activation. In the presence of DEGR-FX or DEGR-FXa, but not des-Gla-DEGR-FXa as scaf-folds, tight and stoichiometric inhibition of FVIIa/TF was achieved. In addition, Penthalaris blocks cell surface-mediated FXa generation by monomer (de-encrypted), but not dimer (encrypted) TF in HL-60 cells. Penthalaris may act in concert with Ixolaris and other salivary anti-hemostatics in order to help ticks to successfully feed on blood. Penthalaris is a novel anticoagulant and a tool to study FVIIa/TF-initiated biologic processes.

Collaboration


Dive into the Ivo M. B. Francischetti's collaboration.

Top Co-Authors

Avatar

José M. C. Ribeiro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John F. Andersen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robson Q. Monteiro

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Jesus G. Valenzuela

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas N. Mather

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Van M. Pham

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eric Calvo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniella M. Mizurini

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge