Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. A. Koch is active.

Publication


Featured researches published by J. A. Koch.


Physics of Plasmas | 2000

Electron, Photon, and Ion Beams from the Relativistic Interaction of Petawatt Laser Pulses with Solid Targets

Stephen P. Hatchett; Curtis G. Brown; Thomas E. Cowan; E. A. Henry; Joy S. Johnson; Michael H. Key; J. A. Koch; A. Bruce Langdon; Barbara F. Lasinski; R.W. Lee; Andrew J. Mackinnon; Deanna M. Pennington; Michael D. Perry; Thomas W. Phillips; Markus Roth; T. Craig Sangster; M. Singh; Richard Adolph Snavely; M. A. Stoyer; S. C. Wilks; Kazuhito Yasuike

In recent Petawatt laser experiments at Lawrence Livermore National Laboratory, several hundred joules of 1 μm laser light in 0.5–5.0-ps pulses with intensities up to 3×1020 W cm−2 were incident on solid targets and produced a strongly relativistic interaction. The energy content, spectra, and angular patterns of the photon, electron, and ion radiations have all been diagnosed in a number of ways, including several novel (to laser physics) nuclear activation techniques. About 40%–50% of the laser energy is converted to broadly beamed hot electrons. Their beam centroid direction varies from shot to shot, but the resulting bremsstrahlung beam has a consistent width. Extraordinarily luminous ion beams (primarily protons) almost precisely normal to the rear of various targets are seen—up to 3×1013 protons with kTion∼several MeV representing ∼6% of the laser energy. Ion energies up to at least 55 MeV are observed. The ions appear to originate from the rear target surfaces. The edge of the ion beam is very shar...


Physics of Plasmas | 1998

Hot electron production and heating by hot electrons in fast ignitor research

M.H. Key; M. D. Cable; Thomas E. Cowan; K. G. Estabrook; B. A. Hammel; S. P. Hatchett; E. A. Henry; D. E. Hinkel; J. D. Kilkenny; J. A. Koch; W. L. Kruer; A. B. Langdon; Barbara F. Lasinski; R.W. Lee; B. J. MacGowan; A. J. Mackinnon; J. D. Moody; M. J. Moran; A. A. Offenberger; Deanna M. Pennington; M. D. Perry; T. J. Phillips; Thomas C. Sangster; M. Singh; M. A. Stoyer; Max Tabak; G. L. Tietbohl; M. Tsukamoto; Kenneth Bradford Wharton; S. C. Wilks

In an experimental study of the physics of fast ignition the characteristics of the hot electron source at laser intensities up to 10(to the 20th power) Wcm{sup -2} and the heating produced at depth by hot electrons have been measured. Efficient generation of hot electrons but less than the anticipated heating have been observed.


Physics of Plasmas | 2006

High-energy Kα radiography using high-intensity, short-pulse lasersa)

H.-S. Park; D. M. Chambers; H.-K. Chung; R. J. Clarke; R. Eagleton; E. Giraldez; T. Goldsack; R. Heathcote; N. Izumi; M.H. Key; J. A. King; J. A. Koch; O. L. Landen; A. Nikroo; P. K. Patel; D. Price; B. A. Remington; H. F. Robey; Richard Adolph Snavely; D Steinman; R.B. Stephens; C. Stoeckl; M. Storm; Max Tabak; W. Theobald; R. P. J. Town; J. E. Wickersham; B. Zhang

The characteristics of 22–40keV Kα x-ray sources are measured. These high-energy sources are produced by 100TW and petawatt high-intensity lasers and will be used to develop and implement workable radiography solutions to probe high-Z and dense materials for the high-energy density experiments. The measurements show that the Kα source size from a simple foil target is larger than 60μm, too large for most radiography applications. The total Kα yield is independent of target thicknesses, verifying that refluxing plays a major role in photon generation. Smaller radiating volumes emit brighter Kα radiation. One-dimensional radiography experiments using small-edge-on foils resolved 10μm features with high contrast. Experiments were performed to test a variety of small volume two-dimensional point sources such as cones, wires, and embedded wires, measured photon yields, and compared the measurements with predictions from hybrid-particle-in-cell simulations. In addition to high-energy, high-resolution backlighte...


Physics of Plasmas | 2011

The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion

M. J. Edwards; J. D. Lindl; B. K. Spears; S. V. Weber; L. J. Atherton; D. L. Bleuel; David K. Bradley; D. A. Callahan; Charles Cerjan; D. S. Clark; G. W. Collins; J. Fair; R. J. Fortner; S. H. Glenzer; S. W. Haan; B. A. Hammel; Alex V. Hamza; S. P. Hatchett; N. Izumi; B. Jacoby; O. S. Jones; J. A. Koch; B. J. Kozioziemski; O. L. Landen; R. A. Lerche; B. J. MacGowan; A. J. Mackinnon; E. R. Mapoles; M. M. Marinak; M. J. Moran

Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm2. A working definition of ignition has been a yield of ∼1 MJ. At this yield the α-particle energy deposited in the fuel would have been ∼200 kJ, which is already ∼10 × more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of ∼1014−15 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about ...


Review of Scientific Instruments | 2001

X-ray backlighting for the National Ignition Facility (invited)

O. L. Landen; D. R. Farley; S. G. Glendinning; L. M. Logory; P. M. Bell; J. A. Koch; F. D. Lee; David K. Bradley; D. H. Kalantar; C. A. Back; R. E. Turner

X-ray backlighting is a powerful tool for diagnosing a large variety of high-energy-density phenomena. Traditional area backlighting techniques used at Nova and Omega cannot be extended efficiently to NIF-scale. New, more efficient backlighting sources and techniques are required and have begun to show promising results. These include a backlit-pinhole point projection technique, pinhole and slit arrays, distributed polychromatic sources, and picket fence backlighters. In parallel, there have been developments in improving the data SNR and hence quality by switching from film to CCD-based recording media and by removing the fixed-pattern noise of MCP-based cameras.


Physics of fluids. B, Plasma physics | 1992

Short wavelength x-ray laser research at the Lawrence Livermore National Laboratory*

B. J. MacGowan; L. B. Da Silva; David J. Fields; C. J. Keane; J. A. Koch; Richard A. London; Dennis L. Matthews; S. Maxon; S. Mrowka; Albert L. Osterheld; James H. Scofield; G. Shimkaveg; J. E. Trebes; Rosemary S. Walling

Laboratory x‐ray lasers are currently being studied by researchers worldwide. This paper reviews some of the recent work carried out at Lawrence Livermore National Laboratory. Laser action has been demonstrated at wavelengths as short as 35.6 A while saturation of the small signal gain has been observed with longer wavelength schemes. Some of the most successful schemes to date have been collisionally pumped x‐ray lasers that use the thermal electron distribution within a laser‐produced plasma to excite electrons from closed shells in neon‐ and nickel‐like ions to metastable levels in the next shell. Attempts to quantify and improve the longitudinal and transverse coherence of collisionally pumped x‐ray lasers are motivated by the desire to produce sources for specific applications. Toward this goal there is a large effort underway to enhance the power output of the Ni‐like Ta x‐ray laser at 44.83 A as a source for x‐ray imaging of live cells. Improving the efficiency of x‐ray lasers in order to produce s...


Physics of Plasmas | 2011

Symmetry tuning for ignition capsules via the symcap techniquea)

G. A. Kyrala; J. L. Kline; S. Dixit; S. H. Glenzer; D. H. Kalantar; D. K. Bradley; N. Izumi; N. B. Meezan; O. L. Landen; D. A. Callahan; S. V. Weber; J. P. Holder; S. Glenn; M. J. Edwards; J. A. Koch; L. J. Suter; S. W. Haan; R. P. J. Town; P. Michel; O. S. Jones; S. H. Langer; J. D. Moody; E. L. Dewald; T. Ma; J. E. Ralph; Alex V. Hamza; E. G. Dzenitis; J. D. Kilkenny

Symmetry of an implosion is crucial to get ignition successfully. Several methods of control and measurement of symmetry have been applied on many laser systems with mm size hohlraums and ns pulses. On the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] we have large hohlraums of cm scale, long drive pulses of 10 s of ns, and a large number of beams with the option to tune their wavelengths. Here we discuss how we used the x-ray self-emission from imploding surrogates to ignition capsules (symcaps) to measure the symmetry of the implosion. We show that symcaps are good surrogates for low order symmetry, though having lower sensitivity to distortions than ignition capsules. We demonstrate the ability to transfer energy between laser beams in a gas-filled hohlraum using wavelength tuning, successfully tuning the lowest order symmetry of the symcaps in different size hohlraums at different laser energies within the specification established by calculations for successful ignition.


Applied Optics | 1998

High-Energy X-ray Microscopy Techniques for Laser-Fusion Plasma Research at the National Ignition Facility.

J. A. Koch; O. L. Landen; Troy W. Barbee; Peter M. Celliers; L. B. Da Silva; S. G. Glendinning; B. A. Hammel; D. H. Kalantar; C. Brown; John F. Seely; G. R. Bennett; W. W. Hsing

Multi-kilo-electron-volt x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF). However, laser energies and plasma characteristics imply that x-ray microscopy will be more challenging at NIF than at existing facilities. We use analytical estimates and numerical ray tracing to investigate several instrumentation options in detail, and we conclude that near-normal-incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-ray microscopy at NIF and similar large facilities. Apertured Kirkpatrick-Baez microscopes using multilayer mirrors may also be good options, particularly for applications requiring one-dimensional imaging over narrow fields of view.


Review of Scientific Instruments | 2010

Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited)

George A. Kyrala; S. Dixit; S. H. Glenzer; D. H. Kalantar; David K. Bradley; N. Izumi; N. B. Meezan; O. L. Landen; D. A. Callahan; S. V. Weber; J. P. Holder; S. Glenn; M. J. Edwards; P. M. Bell; J. R. Kimbrough; J. A. Koch; R. Prasad; L. J. Suter; J. L. Kline; J. D. Kilkenny

Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.


Review of Scientific Instruments | 2006

Development of nuclear diagnostics for the National Ignition Facility (invited)

V. Yu. Glebov; D. D. Meyerhofer; T. C. Sangster; C. Stoeckl; S. Roberts; C. A. Barrera; J. Celeste; Charles Cerjan; Lucile S. Dauffy; David C. Eder; R. L. Griffith; S. W. Haan; B. A. Hammel; S. P. Hatchett; N. Izumi; J. R. Kimbrough; J. A. Koch; O. L. Landen; R. A. Lerche; B. J. MacGowan; M. J. Moran; E. W. Ng; Thomas W. Phillips; P. Song; R. Tommasini; B. K. Young; S. E. Caldwell; Gary P. Grim; S. C. Evans; J. M. Mack

The National Ignition Facility (NIF) will provide up to 1.8MJ of laser energy for imploding inertial confinement fusion (ICF) targets. Ignited NIF targets are expected to produce up to 1019 DT neutrons. This will provide unprecedented opportunities and challenges for the use of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF was defined and they are under development through collaborative efforts at several institutions. This suite includes PROTEX and copper activation for primary yield measurements, a magnetic recoil spectrometer and carbon activation for fuel areal density, neutron time-of-flight detectors for yield and ion temperature, a gamma bang time detector, and neutron imaging systems for primary and downscattered neutrons. An overview of the conceptual design, the developmental status, and recent results of prototype tests on the OMEGA laser will be presented.

Collaboration


Dive into the J. A. Koch's collaboration.

Top Co-Authors

Avatar

N. Izumi

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

O. L. Landen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. J. MacGowan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Tommasini

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.H. Key

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. J. Mackinnon

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. P. Hatchett

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. P. Regan

University of Rochester

View shared research outputs
Researchain Logo
Decentralizing Knowledge