Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Adam Luckenbach is active.

Publication


Featured researches published by J. Adam Luckenbach.


Evolution & Development | 2003

Ecology meets endocrinology: environmental sex determination in fishes

John Godwin; J. Adam Luckenbach; Russell J. Borski

Van Valen (1973) characterized evolution as the control of development by ecology. Sex determination in fishes provides some clear examples of this “control” in operation. Teleost fishes show a remarkable variety of sex determination and differentiation patterns. These range from systems in which sex is determined by sex chromosomes, as in birds and mammals, to simultaneous hermaphrodites that alternate spawning as a female and male on a second to second basis. This extraordinary flexibility may result from a combined lack of developmental constraint on reproductive structures in many lineages and selection for sexual lability in the face of environmental unpredictability. This review addresses environmental influences on sex determination and differentiation in fishes. There is a variety of documented environmental influences on sex determination (ESD) in fishes. We focus here on two classes of examples where the key environmental cues are of clear ecological relevance, the effects appear especially likely to be important as a normal part of the life history, and where there is evidence suggesting the sexual patterns observed represent adaptations that increase individual fitness. These classes are sex determination that is controlled by social interactions (behavioral sex determination [BSD]) (Crews 1993) and temperaturedependent sex determination (TSD). Sex determination controlled by social influences can occur before or after sexual maturation but appears to maximize the expected reproductive success of individuals in both cases. Here we first address BSD and then TSD in fishes. For each pattern of sex determination, we discuss selection pressures that appear to favor these patterns, examples of each, and what is known regarding the underlying physiological mechanisms. For more comprehensive and general reviews of patterns and mechanisms of sex determination in fishes, the reader is referred to several excellent reviews (Nakamura et al. 1998; Baroiller et al. 1999; Baroiller and D’Cotta 2001; Piferrer 2001). The major focus in studies of physiological mediation of teleost sex determination is what is referred to by endocrinologists as the hypothalamo-pituitary-gonadal (HPG) axis (Fig. 1). This axis consists primarily of hypothalamic neurosecretory neurons producing gonadotropin-releasing hormone (GnRH), gonadotropins produced in and released from the pituitary gland (GtH I and GtH II), and the gonad as the major site of steroid biosynthesis with its steroid metabolizing enzymes, steroid hormone receptors, and a variety of other proteins that mediate steroid hormone action. One steroid biosynthetic enzyme that has been a particularly fruitful focus in correlative and manipulative studies of vertebrate sex determination is cytochrome P-450 aromatase. This enzyme catalyzes the conversion of androgens to estrogens (primarily testosterone to estradiol-17 ). Aromatase expression correlates with female determination in a variety of vertebrates, and aromatasespecific antagonists can block female development in fishes, amphibians, reptiles, and birds (Elbrecht and Smith 1992; Lance and Bogart 1992; Crews et al. 1994; Wennstrom and Crews 1995; Kitano et al. 1999; D’Cotta et al. 2001). Estradiol-17 plays a central role in female reproductive physiology in fishes, whereas the androgen 11-ketotestosterone (11-KT) is crucial to gamete maturation and the expression of secondary sexual characteristics in males (Borg 1994; Brantley et al. 1993). Importantly, testosterone levels often do not differ between male and female fishes or are higher in females (Borg 1994). Because of the central role of aromatase in the biosynthesis of estrogens, it will be a focus in consideration of mechanisms by which environmental information leads to sex determination responses. More generally, our understanding of vertebrate sexual function indicates the HPG axis plays the key role in transducing environmental information into gonadal determination, differentiation, and maturation events. A general theme of this review is where and how this transduction may occur in the HPG axis.


Aquaculture | 2003

Gonadal differentiation and effects of temperature on sex determination in southern flounder (Paralichthys lethostigma)

J. Adam Luckenbach; John Godwin; Harry V. Daniels; Russell J. Borski

Abstract Southern flounder ( Paralichthys lethostigma ) support valuable North American fisheries and show great promise for aquaculture. Because females grow faster and reach larger adult sizes than males, monosex culture of females is desirable for commercial operations. A detailed understanding of sexual development and its timing is critical to control sex and optimize culture. Structural and cellular sex-distinguishing markers were identified histologically, and then used to describe ovarian development in female and testicular development in male flounder. In presumptive ovaries of southern flounder, development of an ovarian cavity first occurs in fish ranging from 75 to 100 mm total length (TL). This is considerably delayed relative to that observed in the Japanese congener, Paralichthys olivaceus , where an ovarian cavity is seen in fish as small as 40 mm TL. The smallest southern flounder that possessed primary oocytes in the early perinucleolus stage was 115 mm TL. In presumptive testes, the formation of seminiferous tubules first occurs in fish of approximately 100 mm TL. Spermatogonia remained quiescent until most fish were over 100 mm TL. Overall, gonads from southern flounder greater than 120 mm TL commonly possess gonial cells undergoing meiosis, clearly differentiating sex. The effect of temperature on sex determination in southern flounder was addressed in a separate experiment. Juvenile southern flounder were grown at 18, 23, or 28°C for 245 days. High and low temperatures induced phenotypic sex reversal in juvenile southern flounder, producing a higher proportion of males (96% males at high temperature, P P P. olivaceus , but possibly shifted towards warmer temperatures. These findings indicate that sex differentiation in southern flounder is distinguishable in most fish by 100–120 mm TL and that sex determination is sensitive to temperature. This information is critical to the development of strategies to maximize the number of faster-growing females for commercial flounder culture.


Seminars in Cell & Developmental Biology | 2009

Sex determination in flatfishes: Mechanisms and environmental influences

J. Adam Luckenbach; Russell J. Borski; Harry V. Daniels; John Godwin

Flounder of the genus Paralichthys exhibit a unique mode of sex determination where both low and high temperatures induce male-skewed sex ratios, while intermediate temperatures produce a 1:1 sex ratio. Male differentiation is thus easily induced in genetic females creating a combination of genetic (GSD) and environmental sex determination (ESD). Since male flounder become reproductively fit at substantially smaller body sizes than females, temperature or other environmental variables that elicit lower growth rates may also influence sex differentiation toward male development. This review covers our current knowledge of sex determination and differentiation in flatfishes including possible adaptive significance of ESD and involvement of factors such as aromatase (cyp19).


Aquatic Toxicology | 2013

High-throughput sequencing and pathway analysis reveal alteration of the pituitary transcriptome by 17α-ethynylestradiol (EE2) in female coho salmon, Oncorhynchus kisutch.

Louisa Harding; Irvin R. Schultz; Giles Goetz; J. Adam Luckenbach; Graham Young; Frederick W. Goetz; Penny Swanson

Considerable research has been done on the effects of endocrine disrupting chemicals (EDCs) on reproduction and gene expression in the brain, liver and gonads of teleost fish, but information on impacts to the pituitary gland are still limited despite its central role in regulating reproduction. The aim of this study was to further our understanding of the potential effects of natural and synthetic estrogens on the brain-pituitary-gonad axis in fish by determining the effects of 17α-ethynylestradiol (EE2) on the pituitary transcriptome. We exposed sub-adult coho salmon (Oncorhynchus kisutch) to 0 or 12 ng EE2/L for up to 6 weeks and effects on the pituitary transcriptome of females were assessed using high-throughput Illumina(®) sequencing, RNA-Seq and pathway analysis. After 1 or 6 weeks, 218 and 670 contiguous sequences (contigs) respectively, were differentially expressed in pituitaries of EE2-exposed fish relative to control. Two of the most highly up- and down-regulated contigs were luteinizing hormone β subunit (241-fold and 395-fold at 1 and 6 weeks, respectively) and follicle-stimulating hormone β subunit (-3.4-fold at 6 weeks). Additional contigs related to gonadotropin synthesis and release were differentially expressed in EE2-exposed fish relative to controls. These included contigs involved in gonadotropin releasing hormone (GNRH) and transforming growth factor-β signaling. There was an over-representation of significantly affected contigs in 33 and 18 canonical pathways at 1 and 6 weeks, respectively, including circadian rhythm signaling, calcium signaling, peroxisome proliferator-activated receptor (PPAR) signaling, PPARα/retinoid x receptor α activation, and netrin signaling. Network analysis identified potential interactions between genes involved in circadian rhythm and GNRH signaling, suggesting possible effects of EE2 on timing of reproductive events.


Comparative Biochemistry and Physiology B | 2013

Molecular cloning, characterization, and sexually dimorphic expression of five major sex differentiation-related genes in a Scorpaeniform fish, sablefish (Anoplopoma fimbria).

Elizabeth K. Smith; José M. Guzmán; J. Adam Luckenbach

Regardless of how sex is determined, the gonadal genes expressed downstream that regulate sex differentiation are relatively conserved among vertebrates. The goal of this study was to clone and characterize five key sex differentiation-related genes in a Scorpaeniform fish, sablefish (Anoplopoma fimbria). Complete mRNA sequences of foxl2, cyp19a1a, dmrt1, sox9a and amh were cloned, sequenced, and phylogenetically analyzed. The sablefish mRNA sequences exhibited the characteristic domains of each gene. The deduced amino sequences were highly conserved in some cases, such as Foxl2, whereas others, such as Amh, exhibited lower homology to corresponding sequences in other vertebrates. Using quantitative PCRs developed for each gene, we found that foxl2 and cyp19a1a mRNA levels were significantly elevated in juvenile sablefish ovaries compared to testes, whereas dmrt1, sox9a and amh mRNA levels were significantly elevated in testes relative to ovaries. These patterns were upheld in our tissue distribution analyses of adult fish, but overall four of the genes, foxl2, cyp19a1a, dmrt1 and amh, were robust markers of sex in sablefish. This study provides important molecular tools for ongoing work related to sex control in sablefish and exploration of the earliest period of molecular sex differentiation and its regulation.


PLOS ONE | 2014

Expression profiles of Fsh-regulated ovarian genes during oogenesis in coho salmon.

José M. Guzmán; J. Adam Luckenbach; Yoji Yamamoto; Penny Swanson

The function of follicle-stimulating hormone (Fsh) during oogenesis in fishes is poorly understood. Using coho salmon as a fish model, we recently identified a suite of genes regulated by Fsh in vitro and involved in ovarian processes mostly unexplored in fishes, like cell proliferation, differentiation, survival or extracellular matrix (ECM) remodeling. To better understand the role of these Fsh-regulated genes during oocyte growth in fishes, we characterized their mRNA levels at discrete stages of the ovarian development in coho salmon. While most of the transcripts were expressed at low levels during primary growth (perinucleolus stage), high expression of genes associated with cell proliferation (pim1, pcna, and mcm4) and survival (ddit4l) was found in follicles at this stage. The transition to secondary oocyte growth (cortical alveolus and lipid droplet stage ovarian follicles) was characterized by a marked increase in the expression of genes related to cell survival (clu1, clu2 and ivns1abpa). Expression of genes associated with cell differentiation and growth (wt2l and adh8l), growth factor signaling (inha), steroidogenesis (cyp19a1a) and the ECM (col1a1, col1a2 and dcn) peaked in vitellogenic follicles, showing a strong and positive correlation with transcripts for fshr. Other genes regulated by Fsh and associated with ECM function (ctgf, wapl and fn1) and growth factor signaling (bmp16 and smad5l) peaked in maturing follicles, along with increases in steroidogenesis-related gene transcripts. In conclusion, ovarian genes regulated by Fsh showed marked differences in their expression patterns during oogenesis in coho salmon. Our results suggest that Fsh regulates different ovarian processes at specific stages of development, likely through interaction with other intra- or extra-ovarian factors.


Molecular and Cellular Endocrinology | 2013

Identification of ovarian genes regulated by follicle-stimulating hormone (Fsh) in vitro during early secondary oocyte growth in coho salmon

J. Adam Luckenbach; Yoji Yamamoto; José M. Guzmán; Penny Swanson

Follicle-stimulating hormone (Fsh) function in fishes is poorly understood. This study aimed to reveal Fsh-regulated genes in coho salmon previtellogenic ovarian follicles in vitro. Four suppression subtractive hybridization libraries were generated with RNA isolated from Fsh-treated and control follicles or follicle cell-enriched tissue fractions. Fsh induced steroidogenesis and dynamically upregulated several genes predominantly expressed in follicle cells, including WAP domain-containing protease, connexin 34.3, clusterin (clu1, clu2), fibronectin, wilms tumor 2-like, and influenza virus NS1A-binding protein a. Genes downregulated by Fsh included connective tissue growth factor, alcohol dehydrogenase 8-like, and serine/threonine-protein kinase pim-1. This study demonstrates for the first time in fishes that Fsh influences the expression of a unique suite of ovarian genes involved in processes like cell communication, survival and differentiation, and extracellular matrix remodeling. Collectively, these findings suggest that Fsh and/or steroids induce differentiation of granulosa cells and remodeling of the follicle in preparation for onset of vitellogenesis.


General and Comparative Endocrinology | 2013

Molecular characterization and quantification of sablefish (Anoplopoma fimbria) gonadotropins and their receptors: reproductive dysfunction in female captive broodstock.

José M. Guzmán; J. Adam Luckenbach; Penny Swanson

Efforts to establish an aquaculture industry for sablefish (Anoplopoma fimbria) are constrained by reproductive dysfunction in wild-caught fish and by lack of reproduction of F1 females. Toward a better understanding of the reproductive dysfunction of captive broodstock, full-length cDNAs encoding the sablefish gonadotropin subunits (fshb, lhb and cga) and their receptors (fshr and lhcgr) were cloned, sequenced and quantitative real-time PCR assays developed. Sablefish gonadotropin subunits display some unique features, such as two additional Cys residues in the N-terminal region of Fshb and a lack of potential N-glycosylation sites in Fshb and Lhb, whereas Fshr and Lhcgr possess conserved structural characteristics described in other vertebrates. Wild females captured in fall completed gametogenesis in captivity the next spawning season, whereas females captured three months earlier, during summer, failed to mature. Interestingly, these wild non-maturing females exhibited similar reproductive features as prepubertal F1 females, including low levels of pituitary gonadotropin and ovarian receptor mRNAs and plasma sex steroids, and ovarian follicles arrested at the perinucleolus stage. In conclusion, this study described the cloning, molecular characterization and development of qPCRs for sablefish gonadotropins and their receptors. Rearing conditions may impair vitellogenic growth of ovarian follicles in sablefish, compromising the reproductive success of broodstock.


General and Comparative Endocrinology | 2016

Molecular characterization of the gonadal kisspeptin system: Cloning, tissue distribution, gene expression analysis and localization in sablefish (Anoplopoma fimbria)

Marian R. Fairgrieve; Yasushi Shibata; Elizabeth K. Smith; Edward S. Hayman; J. Adam Luckenbach

The kisspeptin system plays pivotal roles in the regulation of vertebrate reproduction. Classically, kisspeptin produced in the brain stimulates brain gonadotropin-releasing hormone signaling, which in turn activates the pituitary-gonad axis. Expression of the kisspeptin system has also been documented in peripheral tissues, including gonads of mammals and fishes. However, the fish gonadal kisspeptin system remained uncharacterized. Herein we report identification and characterization of four kisspeptin system mRNAs (kisspeptin 1 (kiss1), kiss2, and G protein-coupled receptor 54-1 (gpr54-1) and gpr54-2) in sablefish, Anoplopoma fimbria. Sablefish predicted protein sequences were highly similar to those of other marine teleosts, but less so to freshwater teleosts. Tissue distribution analyses revealed that all four kisspeptin-system transcripts were expressed in both brain and gonad. However, kiss2 was the predominant transcript in the gonads and the only transcript detected in ovulated eggs. Ontogenetic analysis of kiss2 expression in juvenile sablefish gonads demonstrated that levels were low during sex differentiation but increased with fish size and gonadal development. Dramatic increases in kiss2 mRNA occurred during primary oocyte growth, while levels remained relatively low in testes. In situ hybridization revealed that kiss2 mRNA was localized to cytoplasm of perinucleolus stage oocytes, suggesting it could play a local role in oogenesis or could be synthesized and stored within oocytes as maternal mRNA. This represents the first study to focus on the gonadal kisspeptin system in fishes and provides important tools for further investigation of both the gonadal and brain kisspeptin systems in sablefish.


General and Comparative Endocrinology | 2015

Development of approaches to induce puberty in cultured female sablefish (Anoplopoma fimbria)

José M. Guzmán; J. Adam Luckenbach; Denis A.M. da Silva; Gina M. Ylitalo; Penny Swanson

Efforts to establish sustainable and efficient aquaculture production of sablefish (Anoplopoma fimbria) have been constrained by delayed puberty in cultured females. This study integrates a series of experiments aimed at gaining an understanding of the reproductive physiology of puberty in female sablefish. We detected transcripts for the dopamine D2 receptor (drd2) in brain, pituitary and ovary of sablefish, and prepubertal females exhibited significantly elevated brain and pituitary drd2 expression relative to wild maturing females. Treatments with sustained-release cholesterol pellets containing testosterone (T) and the dopamine D2 receptor antagonist, metoclopramide (Met), stimulated expression of pituitary luteinizing hormone beta subunit (lhb) and follicle-stimulating hormone beta subunit (fshb), respectively, in prepubertal females, whereas a combination of T and gonadotropin-releasing hormone agonist (GnRHa) had a strong synergistic effect on lhb expression (2000-fold higher than control). Although T induced a significant increase in the maximum ovarian follicle volume, none of the treatments tested stimulated onset of vitellogenesis. Using liquid chromatography/tandem mass spectrometry, we demonstrated that Met stimulated production of T by previtellogenic ovarian follicles in vitro, whereas gonadotropin preparations enhanced 17α-hydroxyprogesterone, androstenedione (A4), T and 17β-estradiol (E2) production. Treatment with T increased production of A4, 11β-hydroxyandrostenedione, 11β-hydroxytestosterone, E2, 11-ketotestosterone, and 5α-dihydrotestosterone (DHT). Interestingly, in the presence of high doses of T the previtellogenic ovary preferentially produced A4 and DHT over any other metabolite. Our data suggest the existence of dopamine inhibition of the reproductive axis in female sablefish. Treatments with Met and T elevated gonadotropin mRNAs in prepubertal females but failed to stimulate the transition into vitellogenic growth, suggesting a possible failure in pituitary gonadotropin protein synthesis/release. Previtellogenic ovarian follicles of sablefish are equipped to synthesize steroids, including those required for vitellogenic growth, and DHT, a steroid hormone whose role in reproduction of fishes remains unknown.

Collaboration


Dive into the J. Adam Luckenbach's collaboration.

Top Co-Authors

Avatar

Penny Swanson

Washington State University

View shared research outputs
Top Co-Authors

Avatar

José M. Guzmán

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Russell J. Borski

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

John Godwin

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Harry V. Daniels

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Yoji Yamamoto

Tokyo University of Marine Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Edward S. Hayman

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Graham Young

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Craig V. Sullivan

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Denis A.M. da Silva

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge