Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Godwin is active.

Publication


Featured researches published by John Godwin.


Hormones and Behavior | 2001

Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse.

Katharine Semsar; Frederique L.M. Kandel; John Godwin

Arginine vasotocin (AVT) and its mammalian homologoue arginine vasopressin (AVP) influence male sexual and aggressive behaviors in many species. We tested the effects of AVT and an AVP-V(1a) receptor antagonist on the display of alternative male tactics in a tropical coral reef fish, the bluehead wrasse Thalassoma bifasciatum. We gave AVT injections to territorial and nonterritorial males of the large and colorful phenotype (terminal phase) and an AVP-V(1a) receptor antagonist, Manning compound, to territorial males in the field. AVT increased courtship independent of status, while its effects on territoriality and aggression were dependent upon male status. In territorial males, AVT increased courtship and tended to decrease the number of chases toward initial phase individuals. In nonterritorial males, AVT increased courtship, chases toward initial phase individuals, and territorial behavior while decreasing feeding. These are all behaviors rarely seen in nonterritorial males, so AVT made these males act like territorial TP males. The AVP-V(1a) receptor antagonist had opposite effects. It decreased courtship and territorial defense, making these males act more like nonterritorial males. Manipulations of the AVT system shifted males within a single phenotype from the nonterritorial social status to the territorial social status and vice versa. Since the entire suite of behaviors related to territoriality was affected by AVT system manipulations, our results suggest that the AVT system may play a key role in motivation of behaviors related to mating.


Physiology & Behavior | 2003

Fluoxetine treatment decreases territorial aggression in a coral reef fish.

Heidi A.N. Perreault; Katharine Semsar; John Godwin

Serotonin is an important neurotransmitter in the regulation of social interactions in many animals. Correlative studies in numerous vertebrate species, including fishes, indicate that aggressive males have lower relative serotonergic activity than less aggressive males. We used fluoxetine, a selective serotonin reuptake inhibitor, to experimentally enhance serotonergic neurotransmission in a territorial coral reef fish and test the role of this neurotransmitter in mediating aggressive behavior and dominance interactions. The bluehead wrasse, Thalassoma bifasciatum, has a complex social system in which large males aggressively defend spawning territories from intruders. In separate experiments, we tested the effects of chronic and acute fluoxetine treatments on aggressive behavior using a resident-intruder design. In a laboratory experiment, males treated daily with intraperitoneal fluoxetine injections for 2 weeks (6 microg/g bw) displayed fewer intruder chases than saline-treated controls. Chronically fluoxetine-treated males also showed lower levels of activity than saline controls prior to intruder trials. However, activity was not correlated with chases on an individual level, indicating the lower aggression displayed by fluoxetine-treated males was not due solely to general reductions in behavioral display. A field study exposed males to a confined territorial intruder following single intraperitoneal injections of fluoxetine (10 microg/g bw) or saline given to the same individual on different days. The frequency of aggressive chases following acute fluoxetine treatment was significantly lower than that following saline injections. This study experimentally supports the link between serotonin and aggressive behavior in fishes in both a controlled laboratory testing environment and the animals natural habitat.


Brain Behavior and Evolution | 2000

Hypothalamic Arginine Vasotocin mRNA Abundance Variation Across Sexes and with Sex Change in a Coral Reef Fish

John Godwin; Ryan Sawby; Robert R. Warner; David Crews; Matthew S. Grober

Gonadal hormones are important mediators of sexual and aggressive behavior in vertebrates. Recent evidence suggests that the peptide hormones arginine vasotocin (AVT) and its mammalian homologue arginine vasopressin (AVP) often critically mediate these gonadal hormone effects on behavior and have direct influences on behavioral variation. Behavioral differences between sexes, across reproductive states, and even among closely related species are correlated with differences in central AVT/AVP systems in many species. We report differences in hypothalamic AVT mRNA levels between distinct alternate male phenotypes and with female-to-male sex change in the bluehead wrasse (Thalassoma bifasciatum), a teleost fish. The aggressively dominant and strongly courting male phenotype has greater numbers of AVT mRNA producing cells in the magnocellular preoptic area of the hypothalamus than females. Levels of AVT mRNA within these cells in dominant males are also approximately three times female levels whereas the non-aggressive male phenotype has AVT mRNA levels approximately twice female levels. Behavioral sex change is very rapid in this species and is not dependent on the presence of gonads. Conversely, rapid increases in sexual and aggressive behavior during sex change are closely paralleled by approximate fourfold increases in hypothalamic AVT-mRNA levels. The behavioral plasticity shown by bluehead wrasses in response to social environment might be mediated in part by a neuropeptide, AVT, with changes in the gonads and gonadal hormones as the result rather than the cause of behavioral dominance.


Hormones and Behavior | 2012

Nonapeptides and social behavior in fishes.

John Godwin; Richmond R. Thompson

The nonapeptide hormones arginine vasotocin and isotocin play important roles in mediating social behaviors in fishes. Studies in a diverse range of species demonstrate variation in vasotocin neuronal phenotypes across within and between sexes and species as well as effects of hormone administration on aggressive and sexual behaviors. However, patterns vary considerably across species and a general explanatory model for the role of vasotocin in teleost sociosexual behaviors has proven elusive. We review these findings, examine potential explanations for the lack of agreement across studies, and propose a model based on the parvocellular AVT neurons primarily mediating social approach and subordinance functions while the magnocellular and gigantocellular AVT neurons mediate courtship and aggressive behaviors. Isotocin neuronal phenotypes and effects on behavior are relatively unstudied, but research to date suggests this will be a fruitful line of inquiry. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.


Evolution & Development | 2003

Ecology meets endocrinology: environmental sex determination in fishes

John Godwin; J. Adam Luckenbach; Russell J. Borski

Van Valen (1973) characterized evolution as the control of development by ecology. Sex determination in fishes provides some clear examples of this “control” in operation. Teleost fishes show a remarkable variety of sex determination and differentiation patterns. These range from systems in which sex is determined by sex chromosomes, as in birds and mammals, to simultaneous hermaphrodites that alternate spawning as a female and male on a second to second basis. This extraordinary flexibility may result from a combined lack of developmental constraint on reproductive structures in many lineages and selection for sexual lability in the face of environmental unpredictability. This review addresses environmental influences on sex determination and differentiation in fishes. There is a variety of documented environmental influences on sex determination (ESD) in fishes. We focus here on two classes of examples where the key environmental cues are of clear ecological relevance, the effects appear especially likely to be important as a normal part of the life history, and where there is evidence suggesting the sexual patterns observed represent adaptations that increase individual fitness. These classes are sex determination that is controlled by social interactions (behavioral sex determination [BSD]) (Crews 1993) and temperaturedependent sex determination (TSD). Sex determination controlled by social influences can occur before or after sexual maturation but appears to maximize the expected reproductive success of individuals in both cases. Here we first address BSD and then TSD in fishes. For each pattern of sex determination, we discuss selection pressures that appear to favor these patterns, examples of each, and what is known regarding the underlying physiological mechanisms. For more comprehensive and general reviews of patterns and mechanisms of sex determination in fishes, the reader is referred to several excellent reviews (Nakamura et al. 1998; Baroiller et al. 1999; Baroiller and D’Cotta 2001; Piferrer 2001). The major focus in studies of physiological mediation of teleost sex determination is what is referred to by endocrinologists as the hypothalamo-pituitary-gonadal (HPG) axis (Fig. 1). This axis consists primarily of hypothalamic neurosecretory neurons producing gonadotropin-releasing hormone (GnRH), gonadotropins produced in and released from the pituitary gland (GtH I and GtH II), and the gonad as the major site of steroid biosynthesis with its steroid metabolizing enzymes, steroid hormone receptors, and a variety of other proteins that mediate steroid hormone action. One steroid biosynthetic enzyme that has been a particularly fruitful focus in correlative and manipulative studies of vertebrate sex determination is cytochrome P-450 aromatase. This enzyme catalyzes the conversion of androgens to estrogens (primarily testosterone to estradiol-17 ). Aromatase expression correlates with female determination in a variety of vertebrates, and aromatasespecific antagonists can block female development in fishes, amphibians, reptiles, and birds (Elbrecht and Smith 1992; Lance and Bogart 1992; Crews et al. 1994; Wennstrom and Crews 1995; Kitano et al. 1999; D’Cotta et al. 2001). Estradiol-17 plays a central role in female reproductive physiology in fishes, whereas the androgen 11-ketotestosterone (11-KT) is crucial to gamete maturation and the expression of secondary sexual characteristics in males (Borg 1994; Brantley et al. 1993). Importantly, testosterone levels often do not differ between male and female fishes or are higher in females (Borg 1994). Because of the central role of aromatase in the biosynthesis of estrogens, it will be a focus in consideration of mechanisms by which environmental information leads to sex determination responses. More generally, our understanding of vertebrate sexual function indicates the HPG axis plays the key role in transducing environmental information into gonadal determination, differentiation, and maturation events. A general theme of this review is where and how this transduction may occur in the HPG axis.


Frontiers in Neuroendocrinology | 2010

Neuroendocrinology of sexual plasticity in teleost fishes.

John Godwin

The study of sex differences has produced major insights into the organization of animal phenotypes and the regulatory mechanisms generating phenotypic variation from similar genetic templates. Teleost fishes display the greatest diversity of sexual expression among vertebrate animals. This diversity appears to arise from diversity in the timing of sex determination and less functional interdependence among the components of sexuality relative to tetrapod vertebrates. Teleost model systems therefore provide powerful models for understanding gonadal and non-gonadal influences on behavioral and physiological variation. This review addresses socially-controlled sex change and alternate male phenotypes in fishes. These sexual patterns are informative natural experiments that illustrate how variation in conserved neuroendocrine pathways can give rise to a wide range of reproductive adaptations. Key regulatory factors underlying sex change and alternative male phenotypes that have been identified to date include steroid hormones and the neuropeptides GnRH and arginine vasotocin, but genomic approaches are now implicating a diversity of other influences as well.


Proceedings of the Royal Society of London B: Biological Sciences | 1996

Behavioural Sex Change in the Absence of Gonads in a Coral Reef Fish

John Godwin; David Crews; Robert R. Warner

It is an axiom of vertebrate behavioural endocrinology that full expression of a male behavioural phenotype depends on testicular influences during development, in adulthood, or both. Sex change in fishes challenges this necessity: behavioural changes are often rapid and greatly precede gonadal changes. However, steroid hormones can have fast actions on the nervous system, so gonadal influences on behavioural sex change cannot be excluded based solely on the speed of these changes. We report that surgical gonad removal does not prevent or discernibly alter female-to-male behavioural sex change in a protogynous coral reef fish. Male behaviour assumption is instead purely dependent on attaining social dominance. This is the first example of a vertebrate fully expressing a male behavioural phenotype without current or previous exposure to a functioning testis or testicular products.


Aquaculture | 2003

Gonadal differentiation and effects of temperature on sex determination in southern flounder (Paralichthys lethostigma)

J. Adam Luckenbach; John Godwin; Harry V. Daniels; Russell J. Borski

Abstract Southern flounder ( Paralichthys lethostigma ) support valuable North American fisheries and show great promise for aquaculture. Because females grow faster and reach larger adult sizes than males, monosex culture of females is desirable for commercial operations. A detailed understanding of sexual development and its timing is critical to control sex and optimize culture. Structural and cellular sex-distinguishing markers were identified histologically, and then used to describe ovarian development in female and testicular development in male flounder. In presumptive ovaries of southern flounder, development of an ovarian cavity first occurs in fish ranging from 75 to 100 mm total length (TL). This is considerably delayed relative to that observed in the Japanese congener, Paralichthys olivaceus , where an ovarian cavity is seen in fish as small as 40 mm TL. The smallest southern flounder that possessed primary oocytes in the early perinucleolus stage was 115 mm TL. In presumptive testes, the formation of seminiferous tubules first occurs in fish of approximately 100 mm TL. Spermatogonia remained quiescent until most fish were over 100 mm TL. Overall, gonads from southern flounder greater than 120 mm TL commonly possess gonial cells undergoing meiosis, clearly differentiating sex. The effect of temperature on sex determination in southern flounder was addressed in a separate experiment. Juvenile southern flounder were grown at 18, 23, or 28°C for 245 days. High and low temperatures induced phenotypic sex reversal in juvenile southern flounder, producing a higher proportion of males (96% males at high temperature, P P P. olivaceus , but possibly shifted towards warmer temperatures. These findings indicate that sex differentiation in southern flounder is distinguishable in most fish by 100–120 mm TL and that sex determination is sensitive to temperature. This information is critical to the development of strategies to maximize the number of faster-growing females for commercial flounder culture.


Hormones and Behavior | 2004

Multiple mechanisms of phenotype development in the bluehead wrasse.

Katharine Semsar; John Godwin

Despite having detailed information on mechanisms mediating sex-typical behavior in many species, we have little understanding of whether the same mechanisms regulate these behaviors when they are performed in the same species under different social contexts. In the five field experiments of this study of bluehead wrasses (Thalassoma bifasciatum), a sex-changing fish, we examined the roles of arginine vasotocin (AVT) and the potent teleost androgen 11-ketotestosterone (11KT) in mediating sexual and aggressive behaviors typical of dominant males. We demonstrated that AVT appears necessary for the assumption of dominant territorial status in males and females, but is sufficient only in the socially dominant terminal phase (TP) male phenotype. Specifically, an AVP V(1) receptor antagonist prevented both TP males and females from gaining dominance over recently vacated territories. However, unlike TP males in a previous study, neither females nor initial phase males responded to AVT treatment with increases in display of TP male typical behaviors when under social conditions that inhibit sex change. Treating females with 11KT did not alter responsiveness to AVT, but did induce male coloration and courtship behavior that was not observed in oil-treated females. Combined with the results of a previous study, these results indicate that the ability of AVT to induce male-typical behavior differs among sexual phenotypes and that this differential responsiveness appears to be dependent on social context and not directly on exposure to 11KT. Furthermore, since 11KT can induce courtship behavior in females that is not affected by AVT, there may be different hormonal mechanisms mediating courtship behavior under different social contexts.


Seminars in Cell & Developmental Biology | 2009

Sex determination in flatfishes: Mechanisms and environmental influences

J. Adam Luckenbach; Russell J. Borski; Harry V. Daniels; John Godwin

Flounder of the genus Paralichthys exhibit a unique mode of sex determination where both low and high temperatures induce male-skewed sex ratios, while intermediate temperatures produce a 1:1 sex ratio. Male differentiation is thus easily induced in genetic females creating a combination of genetic (GSD) and environmental sex determination (ESD). Since male flounder become reproductively fit at substantially smaller body sizes than females, temperature or other environmental variables that elicit lower growth rates may also influence sex differentiation toward male development. This review covers our current knowledge of sex determination and differentiation in flatfishes including possible adaptive significance of ESD and involvement of factors such as aromatase (cyp19).

Collaboration


Dive into the John Godwin's collaboration.

Top Co-Authors

Avatar

Russell J. Borski

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

David Crews

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Harry V. Daniels

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Melissa S. Lamm

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

J. Adam Luckenbach

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Katharine Semsar

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Ryan Y. Wong

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig V. Sullivan

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge