Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. D. Moody is active.

Publication


Featured researches published by J. D. Moody.


Physics of Plasmas | 1998

Hot electron production and heating by hot electrons in fast ignitor research

M.H. Key; M. D. Cable; Thomas E. Cowan; K. G. Estabrook; B. A. Hammel; S. P. Hatchett; E. A. Henry; D. E. Hinkel; J. D. Kilkenny; J. A. Koch; W. L. Kruer; A. B. Langdon; Barbara F. Lasinski; R.W. Lee; B. J. MacGowan; A. J. Mackinnon; J. D. Moody; M. J. Moran; A. A. Offenberger; Deanna M. Pennington; M. D. Perry; T. J. Phillips; Thomas C. Sangster; M. Singh; M. A. Stoyer; Max Tabak; G. L. Tietbohl; M. Tsukamoto; Kenneth Bradford Wharton; S. C. Wilks

In an experimental study of the physics of fast ignition the characteristics of the hot electron source at laser intensities up to 10(to the 20th power) Wcm{sup -2} and the heating produced at depth by hot electrons have been measured. Efficient generation of hot electrons but less than the anticipated heating have been observed.


Science | 2010

Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies

S. H. Glenzer; B. J. MacGowan; P. Michel; N. B. Meezan; L. J. Suter; S. Dixit; J. L. Kline; G. A. Kyrala; D. K. Bradley; D. A. Callahan; E. L. Dewald; L. Divol; E. G. Dzenitis; M. J. Edwards; Alex V. Hamza; C. A. Haynam; D. E. Hinkel; D. H. Kalantar; J. D. Kilkenny; O. L. Landen; J. D. Lindl; S. LePape; J. D. Moody; A. Nikroo; T. Parham; M. B. Schneider; R. P. J. Town; Paul J. Wegner; K. Widmann; Pamela K. Whitman

Ignition Set to Go One aim of the National Ignition Facility is to implode a capsule containing a deuterium-tritium fuel mix and initiate a fusion reaction. With 192 intense laser beams focused into a centimeter-scale cavity, a major challenge has been to create a symmetric implosion and the necessary temperatures within the cavity for ignition to be realized (see the Perspective by Norreys). Glenzer et al. (p. 1228, published online 28 January) now show that these conditions can be met, paving the way for the next step of igniting a fuel-filled capsule. Furthermore, Li et al. (p. 1231, published online 28 January) show how charged particles can be used to characterize and measure the conditions within the imploding capsule. The high energies and temperature realized can also be used to model astrophysical and other extreme energy processes in a laboratory settings. Laser-driven temperatures and implosion symmetry are close to the requirements for inertial-fusion ignition. Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 megajoule. One hundred and ninety-two simultaneously fired laser beams heat ignition-emulate hohlraums to radiation temperatures of 3.3 million kelvin, compressing 1.8-millimeter-diameter capsules by the soft x-rays produced by the hohlraum. Self-generated plasma optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum, which produces a symmetric x-ray drive as inferred from the shape of the capsule self-emission. These experiments indicate that the conditions are suitable for compressing deuterium-tritium–filled capsules, with the goal of achieving burning fusion plasmas and energy gain in the laboratory.


Physics of Plasmas | 2014

The high-foot implosion campaign on the National Ignition Facilitya)

O. A. Hurricane; D. A. Callahan; D. T. Casey; E. L. Dewald; T. R. Dittrich; T. Döppner; M. A. Barrios Garcia; D. E. Hinkel; L. Berzak Hopkins; P. Kervin; J. L. Kline; S. Le Pape; T. Ma; A. G. MacPhee; J. L. Milovich; J. D. Moody; A. Pak; P. K. Patel; H.-S. Park; B. A. Remington; H. F. Robey; J. D. Salmonson; P. T. Springer; R. Tommasini; L. R. Benedetti; J. A. Caggiano; Peter M. Celliers; C. Cerjan; Rebecca Dylla-Spears; D. H. Edgell

The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×1015) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidenc...


Physics of Plasmas | 2010

National Ignition Campaign Hohlraum energetics

N. B. Meezan; L. J. Atherton; D. A. Callahan; E. L. Dewald; S. Dixit; E. G. Dzenitis; M. J. Edwards; C. A. Haynam; D. E. Hinkel; O. S. Jones; O. L. Landen; Richard A. London; P. Michel; J. D. Moody; J. L. Milovich; M. B. Schneider; C. A. Thomas; R. P. J. Town; A. Warrick; S. V. Weber; K. Widmann; S. H. Glenzer; L. J. Suter; B. J. MacGowan; J. L. Kline; George A. Kyrala; A. Nikroo

The first series of experiments of the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] tested ignition Hohlraum “energetics,” a term described by four broad goals: (1) measurement of laser absorption by the Hohlraum; (2) measurement of the x-ray radiation flux (TRAD4) on the surrogate ignition capsule; (3) quantitative understanding of the laser absorption and resultant x-ray flux; and (4) determining whether initial Hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF Hohlraum energetics experiments. The Hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (<10%) for Hohlraums filled with helium gas. A discussion of our current understanding of NIF Hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes that have been used to design the Hohlraums. The perf...


Physics of Plasmas | 2011

Symmetry tuning for ignition capsules via the symcap techniquea)

G. A. Kyrala; J. L. Kline; S. Dixit; S. H. Glenzer; D. H. Kalantar; D. K. Bradley; N. Izumi; N. B. Meezan; O. L. Landen; D. A. Callahan; S. V. Weber; J. P. Holder; S. Glenn; M. J. Edwards; J. A. Koch; L. J. Suter; S. W. Haan; R. P. J. Town; P. Michel; O. S. Jones; S. H. Langer; J. D. Moody; E. L. Dewald; T. Ma; J. E. Ralph; Alex V. Hamza; E. G. Dzenitis; J. D. Kilkenny

Symmetry of an implosion is crucial to get ignition successfully. Several methods of control and measurement of symmetry have been applied on many laser systems with mm size hohlraums and ns pulses. On the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] we have large hohlraums of cm scale, long drive pulses of 10 s of ns, and a large number of beams with the option to tune their wavelengths. Here we discuss how we used the x-ray self-emission from imploding surrogates to ignition capsules (symcaps) to measure the symmetry of the implosion. We show that symcaps are good surrogates for low order symmetry, though having lower sensitivity to distortions than ignition capsules. We demonstrate the ability to transfer energy between laser beams in a gas-filled hohlraum using wavelength tuning, successfully tuning the lowest order symmetry of the symcaps in different size hohlraums at different laser energies within the specification established by calculations for successful ignition.


Physics of Plasmas | 2012

Implosion dynamics measurements at the National Ignition Facility

Damien G. Hicks; N. B. Meezan; E. L. Dewald; A. J. Mackinnon; R.E. Olson; D. A. Callahan; T. Döppner; L. R. Benedetti; D. K. Bradley; Peter M. Celliers; D. S. Clark; P. Di Nicola; S. N. Dixit; E. G. Dzenitis; J. E. Eggert; D. R. Farley; J. A. Frenje; S. Glenn; S. H. Glenzer; Alex V. Hamza; R. F. Heeter; J. P. Holder; N. Izumi; D. H. Kalantar; S. F. Khan; J. L. Kline; J. J. Kroll; G. A. Kyrala; T. Ma; A. G. MacPhee

Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsu...


Physics of Plasmas | 2012

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments

O. S. Jones; C. Cerjan; M. M. Marinak; J. L. Milovich; H. F. Robey; P. T. Springer; L. R. Benedetti; D. L. Bleuel; E. Bond; D. K. Bradley; D. A. Callahan; J. A. Caggiano; Peter M. Celliers; D. S. Clark; S. M. Dixit; T. Döppner; Rebecca Dylla-Spears; E. G. Dzentitis; D. R. Farley; S. Glenn; S. H. Glenzer; S. W. Haan; B. J. Haid; C. A. Haynam; Damien G. Hicks; B. J. Kozioziemski; K. N. LaFortune; O. L. Landen; E. R. Mapoles; A. J. Mackinnon

A detailed simulation-based model of the June 2011 National Ignition Campaign cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. Although by design the model is able to reproduce the 1D in-flight implosion parameters and low-mode asymmetries, it is not able to accurately predict the measured and inferred stagnation properties and levels of mix. In particular, the measu...


Physics of Plasmas | 2012

Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation

H. F. Robey; T. R. Boehly; Peter M. Celliers; Jon H. Eggert; Damien G. Hicks; R.F. Smith; R. Collins; M. W. Bowers; K. Krauter; P. S. Datte; D. H. Munro; J. L. Milovich; O. S. Jones; P. Michel; C. A. Thomas; R.E. Olson; Stephen M. Pollaine; R. P. J. Town; S. W. Haan; D. A. Callahan; D. S. Clark; J. Edwards; J. L. Kline; S. N. Dixit; M. B. Schneider; E. L. Dewald; K. Widmann; J. D. Moody; T. Döppner; H.B. Radousky

Capsule implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the DT fuel on a low adiabat. Initial experiments to measure the strength and relative timing of these shocks have been conducted on NIF in a specially designed surrogate target platform known as the keyhole target. This target geometry and the associated diagnostics are described in detail. The initial data are presented and compared with numerical simulations. As the primary goal of these experiments is to assess and minimize the adiabat in related DT implosions, a methodology is described for quantifying the adiabat from the shock velocity measurements. Results ...


Physics of Plasmas | 2011

Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments

R. P. J. Town; M. D. Rosen; P. Michel; L. Divol; J. D. Moody; G. A. Kyrala; M. B. Schneider; J. L. Kline; C. A. Thomas; J. L. Milovich; D. A. Callahan; N. B. Meezan; D. E. Hinkel; E. A. Williams; R. L. Berger; M. J. Edwards; L. J. Suter; S. W. Haan; J. D. Lindl; E. L. Dewald; S. Dixit; S. H. Glenzer; O. L. Landen; E. I. Moses; Howard A. Scott; J. A. Harte; George B. Zimmerman

A series of 40 experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel et al., Phys. Plasmas 17, 056305 (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 2, 51 (1975)] simulations using the predicted ener...


Physics of Plasmas | 2014

Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facilitya)

R. P. J. Town; D. K. Bradley; A. L. Kritcher; O. S. Jones; J. R. Rygg; R. Tommasini; M. A. Barrios; L. R. Benedetti; L. Berzak Hopkins; Peter M. Celliers; T. Döppner; E. L. Dewald; David C. Eder; J. E. Field; S. M. Glenn; N. Izumi; S. W. Haan; S. F. Khan; J. L. Kline; G. A. Kyrala; T. Ma; J. L. Milovich; J. D. Moody; S. R. Nagel; A. Pak; J. L. Peterson; H. F. Robey; J. S. Ross; R. H. H. Scott; B. K. Spears

In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments.

Collaboration


Dive into the J. D. Moody's collaboration.

Top Co-Authors

Avatar

L. Divol

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

O. L. Landen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. H. Glenzer

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. J. MacGowan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

N. B. Meezan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. A. Callahan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. Michel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. E. Hinkel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

O. S. Jones

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. K. Kirkwood

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge