Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. E. Hill is active.

Publication


Featured researches published by J. E. Hill.


Science | 2005

Bright X-ray Flares in Gamma-Ray Burst Afterglows

David N. Burrows; Patrizia Romano; A. Falcone; Shiho Kobayashi; Bing Zhang; A. Moretti; Paul T. O'Brien; Michael R. Goad; Sergio Campana; Kim L. Page; Lorella Angelini; S. D. Barthelmy; Andrew P. Beardmore; Milvia Capalbi; Guido Chincarini; J. R. Cummings; G. Cusumano; Derek B. Fox; Paolo Giommi; J. E. Hill; J. A. Kennea; Hans A. Krimm; Vanessa Mangano; Francis E. Marshall; P. Meszaros; David C. Morris; John A. Nousek; Julian P. Osborne; Claudio Pagani; Matteo Perri

Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.


Nature | 2005

A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225

Neil Gehrels; Craig L. Sarazin; Paul T. O'Brien; Bing Zhang; Loius M. Barbier; S. D. Barthelmy; Alexander J. Blustin; David N. Burrows; J. Cannizzo; J. R. Cummings; Michael R. Goad; Stephen T. Holland; C. P. Hurkett; J. A. Kennea; Andrew J. Levan; Craig B. Markwardt; K. O. Mason; P. Meszaros; M. J. Page; David M. Palmer; E. Rol; Takanori Sakamoto; R. Willingale; Lorella Angelini; Andrew P. Beardmore; Patricia T. Boyd; Alice A. Breeveld; Sergio Campana; Margaret Chester; Guido Chincarini

Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z ≈ 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (< 10″) and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from—and the localization of—the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.


Nature | 2005

An unexpectedly rapid decline in the X-ray afterglow emission of long gamma-ray bursts.

Gianpiero Tagliaferri; Mike R. Goad; Guido Chincarini; A. Moretti; Sergio Campana; David N. Burrows; Matteo Perri; S. D. Barthelmy; N. Gehrels; Hans A. Krimm; Takanori Sakamoto; Pawan Kumar; P. Meszaros; Shiho Kobayashi; Bing Zhang; L. Angelini; P. L. Banat; A. P. Beardmore; Milvia Capalbi; S. Covino; G. Cusumano; P. Giommi; Olivier Godet; J. E. Hill; J. A. Kennea; Vanessa Mangano; David C. Morris; John A. Nousek; Paul T. O'Brien; Julian P. Osborne

‘Long’ γ-ray bursts (GRBs) are commonly accepted to originate in the explosion of particularly massive stars, which give rise to highly relativistic jets. Inhomogeneities in the expanding flow result in internal shock waves that are believed to produce the γ-rays we see. As the jet travels further outward into the surrounding circumstellar medium, ‘external’ shocks create the afterglow emission seen in the X-ray, optical and radio bands. Here we report observations of the early phases of the X-ray emission of five GRBs. Their X-ray light curves are characterised by a surprisingly rapid fall-off for the first few hundred seconds, followed by a less rapid decline lasting several hours. This steep decline, together with detailed spectral properties of two particular bursts, shows that violent shock interactions take place in the early jet outflows.


Optical Science and Technology, SPIE's 48th Annual Meeting | 2004

Readout modes and automated operation of the Swift X-ray Telescope

J. E. Hill; David N. Burrows; John A. Nousek; Anthony F. Abbey; Richard M. Ambrosi; H. Bräuninger; Wolfgang Burkert; Sergio Campana; Chaitanya Cheruvu; G. Cusumano; Michael J. Freyberg; Gisela D. Hartner; R. Klar; C. Mangels; A. Moretti; Koji Mori; Dave C. Morris; A. Short; Gianpiero Tagliaferri; D. J. Watson; P. Wood; Alan A. Wells

The Swift X-ray Telescope (XRT) is designed to make astrometric, spectroscopic, and photometric observations of X-ray emission from Gamma-ray Bursts and their afterglows in the energy band 0.2-10 keV. In order to provide rapid-response, automated observations of these randomly occurring objects without ground intervention, the XRT must be able to observe objects covering some seven orders of magnitude in flux, extracting the maximum possible science from each one. This requires a variety of readout modes designed to optimise the information collected in response to shifting scientific priorities as the flux from the burst diminishes. The XRT will support four major readout modes: imaging, two timing modes and photon-counting, with several sub-modes. We describe in detail the readout modes of the XRT. We describe the flux ranges over which each mode will operate, the automated mode switching that will occur and the methods used for collection of bias information for this instrument. We also discuss the data products produced from each mode.


The Astrophysical Journal | 2006

The Giant X-Ray Flare of GRB 050502B: Evidence for Late-Time Internal Engine Activity

A. Falcone; D. N. Burrows; Davide Lazzati; Sergio Campana; Shiho Kobayashi; Bing Zhang; P. Meszaros; Kim L. Page; J. A. Kennea; Patrizia Romano; Claudio Pagani; L. Angelini; A. P. Beardmore; Milvia Capalbi; Guido Chincarini; G. Cusumano; P. Giommi; Mike R. Goad; Olivier Godet; Dirk Grupe; J. E. Hill; V. La Parola; Vanessa Mangano; A. Moretti; John A. Nousek; P. T. O’Brien; Julian P. Osborne; Matteo Perri; Gianpiero Tagliaferri; Alan A. Wells

Until recently, X-ray flares during the afterglow of gamma-ray bursts (GRBs) were a rarely detected phenomenon; thus, their nature is unclear. During the afterglow of GRB 050502B, the largest X-ray flare ever recorded rose rapidly above the afterglow light curve detected by the Swift X-Ray Telescope. The peak flux of the flare was >500 times that of the underlying afterglow, and it occurred >12 minutes after the nominal prompt burst emission. The fluence of this X-ray flare, (1.0 ± 0.05) × 10-6 ergs cm-2 in the 0.2-10.0 keV energy band, exceeded the fluence of the nominal prompt burst. The spectra during the flare were significantly harder than those measured before and after the flare. Later in time, there were additional flux increases detected above the underlying afterglow, as well as a break in the afterglow light curve. All evidence presented below, including spectral and, particularly, timing information during and around the giant flare, suggests that this giant flare was the result of internal dissipation of energy due to late central engine activity, rather than an afterglow-related effect. We also find that the data are consistent with a second central engine activity episode, in which the ejecta is moving slower than that of the initial episode, causing the giant flare and then proceeding to overtake and refresh the afterglow shock, thus causing additional activity at even later times in the light curve.


Optical Science and Technology, SPIE's 48th Annual Meeting | 2004

SWIFT XRT Point Spread Function measured at the Panter end-to-end tests

A. Moretti; Sergio Campana; Gianpiero Tagliaferri; Anthony F. Abbey; Richard M. Ambrosi; Lorella Angelini; Andrew P. Beardmore; H. Bräuninger; Wolfgang Burkert; David N. Burrows; Milvia Capalbi; Guido Chincarini; Oberto Citterio; G. Cusumano; Michael J. Freyberg; P. Giommi; Gisela D. Hartner; J. E. Hill; Koji Mori; Dave C. Morris; Kallol Mukerjee; John A. Nousek; Julian P. Osborne; A. Short; Francesca Tamburelli; D. J. Watson; Alan A. Wells

The SWIFT X-ray Telescope (XRT) is designed to make astrometric, spectroscopic and photometric observations of the X-ray emission from Gamma-ray bursts and their afterglows, in the energy band 0.2 - 10 keV. Here we report the results of the analysis of SWIFT XRT Point Spread Function (PSF) as measured during the end-to-end calibration campaign at the Panter X-Ray beam line facility. The analysis comprises the study of the PSF both on-axis and off-axis. We compare the laboratory results with the expectations from the ray-tracing software and from the mirror module tested as a single unit. We show that the measured HEW meets the mission scientific requirements. On the basis of the calibration data we build an analytical model which is able to reproduce the PSF as a function of the energy and the position within the detector.


Astronomy and Astrophysics | 2006

Evidence for intrinsic absorption in the Swift X-ray afterglows

Sergio Campana; Patrizia Romano; S. Covino; Davide Lazzati; A. De Luca; Guido Chincarini; A. Moretti; Gianpiero Tagliaferri; G. Cusumano; P. Giommi; Vanessa Mangano; Matteo Perri; V. La Parola; Milvia Capalbi; T. Mineo; L. A. Antonelli; D. N. Burrows; J. E. Hill; Judith Lea Racusin; J. A. Kennea; David C. Morris; Claudio Pagani; John A. Nousek; Julian P. Osborne; Mike R. Goad; Kim L. Page; A. P. Beardmore; Olivier Godet; Paul T. O'Brien; Alan A. Wells

Gamma-ray burst (GRB) progenitors are observationally linked to the death of massive stars. X-ray studies of the GRB afterglows can deepen our knowledge of the ionization status and metal abundances of the matter in the GRB environment. Moreover, the presence of local matter can be inferred through its fingerprints in the X-ray spectrum, i.e. the presence of absorption higher than the Galactic value. A few studies based on BeppoSAX and XMM-Newton found evidence of higher than Galactic values for the column density in a number of GRB afterglows. Here we report on a systematic analysis of 17 GRBs observed by Swift up to April 15, 2005. We observed a large number of GRBs with an excess of column density. Our sample, together with previous determinations of the intrinsic column densities for GRBs with known redshift, provides evidence for a distribution of absorption consistent with that predicted for randomly occurring GRB within molecular clouds.


The Astrophysical Journal | 2006

Swift XRT Observations of the Afterglow of GRB 050319

G. Cusumano; Vanessa Mangano; Lorella Angelini; S. D. Barthelmy; Andrew P. Beardmore; David N. Burrows; Sergio Campana; John K. Cannizzo; Milvia Capalbi; Guido Chincarini; Neil Gehrels; Paolo Giommi; Michael R. Goad; J. E. Hill; J. A. Kennea; Shiho Kobayashi; Valentina La Parola; Daniele Malesani; P. Meszaros; Teresa Mineo; A. Moretti; John A. Nousek; P. T. O’Brien; Julian P. Osborne; Claudio Pagani; Kim L. Page; Matteo Perri; Patrizia Romano; Gianpiero Tagliaferri; Bing Zhang

Swift discovered the high-redshift GRB 050319 with the Burst Alert Telescope (BAT) and began observing with its narrow-field instruments only 225 s after the burst onset. The afterglow X-ray emission was monitored by the XRT up to 28 days after the burst. The light curve shows a decay with three different phases, each characterized by a distinct slope: an initial steep decay with a power-law index of ~5.5, a second phase characterized by a flat decay slope of ~0.54, and a third phase with a decay slope of ~1.14. During the first phase the spectral energy distribution is softer than in the following two phases, and the photon index is consistent with the GRB prompt spectrum. The extrapolation of the BAT light curve to the XRT band suggests that the initial fast-decaying phase of the XRT afterglow might be the low-energy tail of the prompt emission. The second break in the afterglow light curve occurs about 27,000 s after the burst. The spectral energy distribution before and after the second break does not change, and it can be tentatively interpreted as a jet break or the end of a delayed or continuous energy injection phase.


Proceedings of SPIE | 2005

In-flight calibration of the Swift XRT point spread function

A. Moretti; Sergio Campana; T. Mineo; Patrizia Romano; A. F. Abbey; L. Angelini; A. P. Beardmore; Wolfgang Burkert; David N. Burrows; Milvia Capalbi; Guido Chincarini; Oberto Citterio; G. Cusumano; Michael J. Freyberg; P. Giommi; Mike R. Goad; Olivier Godet; Gisela D. Hartner; J. E. Hill; J. A. Kennea; V. La Parola; Vanessa Mangano; David C. Morris; John A. Nousek; Julian P. Osborne; Kim L. Page; Claudio Pagani; Matteo Perri; Gianpiero Tagliaferri; Francesca Tamburelli

The Swift X-ray Telescope (XRT) is designed to make astrometric, spectroscopic and photometric observations of the X-ray emission from Gamma-ray bursts and their afterglows, in the energy band 0.2-10 keV. Swift was successfully launched on 2004 November 20. Here we report the results of the analysis of Swift XRT Point Spread Function (PSF) as measured in the first four months of the mission during the instrument calibration phase. The analysis includes the study of the PSF of different point-like sources both on-axis and off-axis with different spectral properties. We compare the in-flight data with the expectations from the on-ground calibration. On the basis of the calibration data we built an analytical model to reproduce the PSF as a function of the energy and the source position within the detector which can be applied in the PSF correction calculation for any extraction region geometry.


Astronomical Telescopes and Instrumentation | 2003

Swift x-ray telescope (XRT)

David N. Burrows; J. E. Hill; John A. Nousek; Alan A. Wells; A. Short; Richard M. Ambrosi; Guido Chincarini; Oberto Citterio; Gianpiero Tagliaferri

The Swift Gamma-Ray Burst Explorer will be launched late in 2003 to make prompt multiwavelength observations of Gamma-Ray Bursts and Afterglows. The X-ray Telescope (XRT) provides key capabilities that permit Swift to determine GRB positions with several arcsecond accuracy within 100 seconds of the burst onset. The XRT is designed to observe GRB afterglows covering over seven orders of magnitude in flux in the 0.2-10 keV band, with completely autonomous operation. GRB positions are determined within seconds of target acquisition, and accurate positions are sent to the ground for distribution over the GCN. The XRT can also measure redshifts of GRBs for bursts with Fe line emission or other spectral features.

Collaboration


Dive into the J. E. Hill's collaboration.

Top Co-Authors

Avatar

David N. Burrows

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

John A. Nousek

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. A. Kennea

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

P. Giommi

Agenzia Spaziale Italiana

View shared research outputs
Researchain Logo
Decentralizing Knowledge