Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.G. Kwak is active.

Publication


Featured researches published by J.G. Kwak.


Nuclear Fusion | 2011

Characteristics of the First H-mode Discharges in KSTAR

S.W. Yoon; J.-W. Ahn; Y.M. Jeon; T. Suzuki; S.H. Hahn; W.H. Ko; K.D. Lee; J.I. Chung; Y.U. Nam; J.Y. Kim; Suk-Ho Hong; Hyunsook Kim; W.C. Kim; Y.K. Oh; J.G. Kwak; Y.S. Park; S.A. Sabbagh; D. Humpreys; Y.-S. Na; K.M. Kim; G.S. Yun; A.W. Hyatt; P. Gohil; Y.S. Bae; H.L. Yang; H.K. Park; M. Kwon; G.S. Lee

Typical ELMy H-mode discharges have been obtained in the KSTAR tokamak with the combined auxiliary heating of neutral beam injection (NBI) and electron cyclotron resonant heating (ECRH). The minimum external heating power required for the L?H transition is about 0.9?MW for a line-averaged density of ~2.0 ? 1019?m?3. There is a clear indication of the increase in the L?H threshold power with decreasing density for densities lower than ~2 ? 1019?m?3. The L?H transitions typically occurred shortly after the beginning of plasma current flattop (Ip = 0.6?MA) period and after the fast shaping to a highly elongated double-null divertor configuration. The maximum heating power available was marginal for the L?H transition, which is also implied by the relatively slow transition time (>10?ms) and the synchronization of the transition with large sawtooth crashes. The initial analysis of thermal energy confinement time (?E) indicates that ?E is higher than the prediction of multi-machine scaling laws by 10?20%. A clear increase in electron and ion temperature in the pedestal is observed in the H-mode phase but the core temperature does not change significantly. On the other hand, the toroidal rotation velocity increased over the whole radial range in the H-mode phase. The measured ELM frequency was around 10?30?Hz for the large ELM bursts and 50?100?Hz for the smaller ones. In addition, very small and high frequency (200?300?Hz) ELMs appeared between large ELM spikes when the ECRH is added to the NBI-heated H-mode plasmas. The drop of total stored energy during a large ELM is up to 5% in most cases.


Nuclear Fusion | 2003

Development of a KSTAR ICRF antenna for long pulse operation

Y.D. Bae; J.G. Kwak; S.K. Kim; J.S. Yoon; Bong Guen Hong; C.K. Hwang; S.J. Wang; S.U. Jeong

A prototype ion cyclotron range of frequency (ICRF) antenna with RF power of 6 MW has been developed for the long pulse (300 s), high power operation in the Korea superconducting tokamak advanced research (KSTAR) tokamak. Cooling paths in the antenna were carefully designed to remove the dissipated RF power loss. An RF power test has been performed to estimate the standoff capability of the antenna. A high power RF test at a frequency of 30 MHz gives a standoff voltage of 30.5 kVp for 60 s and 23.2 kVp for 300 s (without cooling). During the RF pulse, the peak voltage, forward/reflected powers, temperature of the antenna, and gas pressure are measured. A vacuum feedthrough of 1 MW RF power has been developed, which has two alumina ceramic cylinders and an O-ring seal. For cooling of the ceramic parts, dry air is injected into the ceramic surface through two outer nozzles. Independent cooling water channels are installed to cool the inner conductor of the feedthrough. RF high voltage tests show that stable operation is possible, with a peak voltage of 28.9 kVp for 300 s, without any severe damage.


Nuclear Fusion | 2011

Initial phase wall conditioning in KSTAR

Suk-Ho Hong; Kwang-Pyo Kim; Sung-Woo Kim; Jong-Ho Sun; Dong-Su Lee; Hyun-Jong Woo; Sang-Yong Lee; Sang-hwa Lee; Eunkyung Park; Sang-Joon Park; Kyung Min Kim; K.S. Lee; S. S. Kim; J.Y. Kim; Sun-Jung Wang; Jae-Min Park; Woong-Chae Kim; Hak-Kun Kim; K.R. Park; H.L. Yang; Yeong-Kook Oh; J.G. Kwak; Hoonkyun Na; Jae-yong Kim; Kyu-Sun Chung

The initial phase wall conditioning in KSTAR is depicted. The KSTAR wall conditioning procedure consists of vessel baking, glow discharge cleaning (GDC), ICRH wall conditioning (ICWC) and boronization (Bz). Vessel baking is performed for the initial vacuum conditioning in order to remove various kinds of impurities including H2O, carbon and oxygen and for the plasma operation. The total outgassing rates after vessel baking in three successive KSTAR campaigns are compared. GDC is regularly performed as a standard wall cleaning procedure. Another cleaning technique is ICWC, which is useful for inter-shot wall conditioning under a strong magnetic field. In order to optimize the operation time and removal efficiency of ICWC, a parameter scan is performed. Bz is a standard technique to remove oxygen impurity from a vacuum vessel. KSTAR has used carborane powder which is a non-toxic boron-containing material. The KSTAR Bz has been successfully performed through two campaigns: water and oxygen levels in the vacuum vessel are reduced significantly. As a result, KSTAR has achieved its first L–H mode transition, although the input power was marginal for the L–H transition threshold. The characteristics of boron-containing thin films deposited for boronization are investigated.


Nuclear Fusion | 2013

Investigation of MHD instabilities and control in KSTAR preparing for high beta operation

Y.S. Park; S.A. Sabbagh; J. Bialek; J.W. Berkery; S.G. Lee; W.H. Ko; J.G. Bak; Y.M. Jeon; J.-K. Park; Joon-Youn Kim; S.H. Hahn; J.-W. Ahn; S.W. Yoon; K.D. Lee; M.J. Choi; G.S. Yun; H.K. Park; K.-I. You; Y.S. Bae; Y.K. Oh; W.C. Kim; J.G. Kwak

Initial H-mode operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) is expanded to higher normalized beta and lower plasma internal inductance moving towards design target operation. As a key supporting device for ITER, an important goal for KSTAR is to produce physics understanding of MHD instabilities at long pulse with steady-state profiles, at high normalized beta, and over a wide range of plasma rotation profiles. An advance from initial plasma operation is a significant increase in plasma stored energy and normalized beta, with Wtot = 340 kJ, βN = 1.9, which is 75% of the level required to reach the computed ideal n = 1 no-wall stability limit. The internal inductance was lowered to 0.9 at sustained H-mode duration up to 5 s. In ohmically heated plasmas, the plasma current reached 1 MA with prolonged pulse length up to 12 s. Rotating MHD modes are observed in the device with perturbations having tearing rather than ideal parity. Modes with m/n = 3/2 are triggered during the H-mode phase but are relatively weak and do not substantially reduce Wtot. In contrast, 2/1 modes to date only appear when the plasma rotation profiles are lowered after H–L back-transition. Subsequent 2/1 mode locking creates a repetitive collapse of βN by more than 50%. Onset behaviour suggests the 3/2 mode is close to being neoclassically unstable. A correlation between the 2/1 mode amplitude and local rotation shear from an x-ray imaging crystal spectrometer suggests that the rotation shear at the mode rational surface is stabilizing. As a method to access the ITER-relevant low plasma rotation regime, plasma rotation alteration by n = 1, 2 applied fields and associated neoclassical toroidal viscosity (NTV) induced torque is presently investigated. The net rotation profile change measured by a charge exchange recombination diagnostic with proper compensation of plasma boundary movement shows initial evidence of non-resonant rotation damping by the n = 1, 2 applied field configurations. The result addresses perspective on access to low rotation regimes for MHD instability studies applicable to ITER. Computation of active RWM control using the VALEN-3D code examines control performance using midplane locked mode detection sensors. The LM sensors are found to be strongly affected by mode and control coil-induced vessel current, and consequently lead to limited control performance theoretically.


Nuclear Engineering and Technology | 2009

CURRENT STATUS OF NUCLEAR FUSION ENERGY RESEARCH IN KOREA

M. Kwon; Young S. Bae; Seungyon Cho; Wonho Choe; Bong Geun Hong; Yong-Seok Hwang; Jin Yong Kim; Keeman Kim; Yaung-Soo Kim; J.G. Kwak; Hyeon Gon Lee; Sang-Il Lee; Yong-Su Na; Byung-Hoon Oh; Yeong-Kook Oh; Ji Yeon Park; Hyung Lyeol Yang; In Keun Yu

The history of nuclear fusion research in Korea is rather short compared to that of advanced countries. However, since the mid-1990s, at which time the construction of KSTAR was about to commence, fusion research in Korea has been actively carried out in a wide range of areas, from basic plasma physics to fusion reactor design. The flourishing of fusion research partly owes to the fact that industrial technologies in Korea including those related to the nuclear field have been fully matured, with their quality being highly ranked in the world. Successive pivotal programs such as KSTAR and ITER have provided diverse opportunities to address new scientific and technological problems in fusion as well as to draw young researchers into related fields. The frame of the Korean nuclear fusion program is now changing from a small laboratory scale to a large national agenda. Coordinated strategies from different views and a holistic approach are necessary in order to achieve optimal efficiency and effectiveness. Upon this background, the present paper reflects upon the road taken to arrive at this point and looks ahead at the coming future in nuclear fusion research activities in Korea.


Nuclear Fusion | 2007

Progress in the development of heating systems towards long pulse operation for KSTAR

J.G. Kwak; Y.D. Bae; D.H. Chang; D.S. Chang; Bong Guen Hong; C.K. Hwang; S.R. In; S.H. Jeong; J.T. Jin; K.S. Jung; B.R. Kim; J.Y. Kim; S.K. Kim; T.S. Kim; D.W. Lee; K.W. Lee; B.H. Oh; C.S. Seo; M.S. Seo; B.J. Yoon; J.S. Yoon; S.J. Wang

Construction of the Korea superconducting tokamak advanced research (KSTAR) tokamak is in its final phase. For the long-pulse KSTAR discharges, the ion cyclotron range of frequencies (ICRF) and neutral beam injection (NBI) heating systems are expected to play important roles through a selective heating of ions and electrons, control of the plasma pressure and current profiles, a core fuelling and beam diagnostics for the KSTAR. In addition, the ICRF system is expected to be used for possible discharge cleaning and assisting in the tokamak startup. In this paper, the recent progress in the development of the ICRF and the NBI heating systems is described. The four-strap ICRF antenna has been successfully tested for a voltage up to 41 kV for a pulse length of 300 s (to 46 kV for 20 s) in a test chamber. A prototype KSTAR NBI system has been developed. At present, the system has successfully produced a 1 MW beam power for 200 s and a 3.5 MW output beam power for 4 s.


Fusion Science and Technology | 2013

Progress of KSTAR 5-GHz Lower Hybrid Current Drive System

Sung-Ju Park; Y.S. Bae; J. H. Kim; H. Do; H. T. Kim; K. M. Kim; H. K. Kim; H. J. Kim; W. S. Han; H.L. Yang; J.G. Kwak; Won Namkung; Moo-Hyun Cho; H.K. Park; L. Delpech; J. Hillairet; R. Magne; G. T. Hoang; X. Litaudon; G. Wallace; S. Shiraiwa; R. Vieira; J. Doody

Abstract A 5-GHz steady-state lower hybrid (LH) current drive (LHCD) system is planned to support steady-state and advanced tokamak operation on the Korea Superconducting Tokamak Advanced Research (KSTAR) experiment. As an initial phase, a pulsed 5-GHz, 500-kW LHCD system has been installed in KSTAR for basic experimental studies of the LH coupling and flux saving in the plasma current ramp-up, prior to long-pulse noninductive operation in KSTAR. A Toshiba-made klystron developed in collaboration with Pohang University of Science and Technology in 2006 is utilized for the initial KSTAR LHCD system. The LH launcher is designed as a fully active waveguide grill type with a parallel refractive index n[parallel] value ranging from 1.8 to 4.3 and with high directivity. In the initial stage, the LH launcher consists of eight columns of four-way power splitters and two columns of dummy waveguides, one on each side. The operational n[parallel] value is fixed at 2.1 but can be adjusted by replacing waveguide components external to the vacuum vessel. Since the target operation pulse duration of the initial LHCD system is 2 s with an output power of 500 kW at the klystron window, the prototype klystron was recently successfully conditioned to a radio frequency power of 514 kW for a maximum pulse duration of 3 s using a matched dummy load (voltage standing wave ratio of 1.16:1). This paper presents the progress of the initial KSTAR LHCD system and the performance test results of the prototype klystron. The research plan aiming at steady-state LHCD operation in KSTAR is also described in this paper.


Physics of Plasmas | 2017

Comparison of divertor heat flux splitting by 3D fields with field line tracing simulation in KSTAR

Kimin Kim; J.-W. Ahn; Hun-Su Lee; J.-K. Park; C. S. Kang; Y. In; J.G. Kwak; S.W. Yoon; O. K. Oh; Wonho Choe

We present the experimental and numerical analysis of divertor heat flux spitting by 3D magnetic fields in KSTAR. A dedicated experiment to measure the modification of the divertor heat flux profile in the n = 2 resonant and non-resonant field configurations has been conducted. The measured heat flux profiles were directly compared to the magnetic field line tracing (FLT) simulation using the POCA-FLT code, which fully considers vacuum and ideal plasma response models. Measurements indicate that the 3D fields induce strong splitting of heat flux on the divertor target due to the formation of stochastic field layers. Splitting characteristics largely depend on the applied 3D field structure and its alignment to the axisymmetric magnetic pitch. The modeling of the field line connection length shows good agreement with measurements, reproducing well the pattern of heat flux splitting. Simulations with the ideal plasma response better reproduce measured heat flux profiles by excitation of non-resonant field c...


Nuclear Fusion | 2014

Characteristics of global energy confinement in KSTAR L- and H-mode plasmas

Hyo-Soo Kim; Y.M. Jeon; Y.-S. Na; Young-chul Ghim; J.-W. Ahn; S.W. Yoon; J.G. Bak; Y.S. Bae; J.S. Kim; M. Joung; J.H. Jeong; Suk-Ho Hong; K.M. Kim; T. Suzuki; W.C. Kim; J.G. Kwak

We evaluate the characteristics of global energy confinement in KSTAR (?E,KSTAR) quantitatively in three ways; firstly by comparing it with multi-machine scalings, secondly by deriving multiple regression equations for the L- and the H-mode plasmas, respectively, and lastly by comparing confinement enhancement of the H-mode phase with respect to the L-mode phase in each discharge defined as Hexp. The KSTAR database exhibits ?E,KSTAR of ?0.04 to ?0.16?s and of ?0.06 to ?0.19?s in L-mode and in H-mode plasmas, respectively. The multiple regression equations derived by statistical analysis present the similar dependency on PL and higher dependency on Ip compared with the multi-machine scalings, however the dependency on ? in both L- and H-mode plasmas draw the negative power dependency of ??0.68 and ??0.76 for H-mode and for L-mode database, respectively on the contrary to the positive dependency in all multi-machine empirical scalings. It is found that the energy confinement of both L-mode and H-mode of the discharges with Hexp?>?1.5 can be well-predicted by multi-machine scalings, ?E,89L and ?E,92H. Apart from this, the H-mode confinement with 1.5?


Fusion Science and Technology | 2013

Overview of KSTAR Results in Phase-I Operation

H. L. Yang; J.G. Kwak; Y. K. Oh; K.R. Park; W. C. Kim; S. G. Lee; J. Y. Kim; Y.S. Bae; Y. M. Park; H. K. Kim; Y. Chu; M. K. Park; J. S. Kim; S. R. In; S. H. Joung; W. H. Choe; H.K. Park; Y. S. Hwang; Y. S. Na; J. G. Park; J. W. Ahn; Y. S. Park; M. Kwon; J.A. Leuer; N.W. Eidietis; A.W. Hyatt; M.L. Walker; Y. Gorelov; J. Lohr; D. Mueller

Abstract The KSTAR (Korea Superconducting Tokamak Advanced Researc pursued to develop key technologies for superconducting tokamak operation and to contribute to a few research items for ITER relevant issues. As a result, the KSTAR achieved highly confined mode (H-mod in 2010 campaign and successfully demonstrated suppression of Edge Localized Mode (ELM) using n=1 Resonant Magnetic Perturbation (RMP) coils. The KSTAR is also initiating machine performance based on the designed machine parameters. The plasma current we achieved was 1 MA, and longest plasma pulse length has been extended to 10 s. In spite of limited heating power to 3.5 MW, several key actuators satisfactorily supported to implement a few scientific researches such as ELM control. On the basis of big progress in both the plasma performance and the experimental results, the KSTAR operation will explore key scientific and technical research issues under steady state operation condition in phase-2 operation.

Collaboration


Dive into the J.G. Kwak's collaboration.

Top Co-Authors

Avatar

Y.S. Bae

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bong-Guen Hong

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

W.H. Ko

Korea University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

J.H. Jeong

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G.S. Yun

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

M.J. Choi

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge