J.L. Ellis
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.L. Ellis.
The Journal of Agricultural Science | 2008
J.L. Ellis; J. Dijkstra; E. Kebreab; A. Bannink; N. E. Odongo; B.W. McBride
Methane, in addition to being a significant source of energy loss to the animal that can range from 0·02 to 0·12 of gross energy intake, is one of the major greenhouse gases being targeted for reduction by the Kyoto protocol. Thus, one of the focuses of recent research in animal science has been to develop or improve existing methane prediction models in order to increase overall understanding of the system and to evaluate mitigation strategies for methane reduction. Several dynamic mechanistic models of rumen function have been developed which contain hydrogen gas balance sub-models from which methane production can be predicted. These models predict methane production with varying levels of success and in many cases could benefit from further development. Central to methane prediction is accurate volatile fatty acid prediction, representation of the competition for substrate usage within the rumen, as well as descriptions of protozoal dynamics and pH. Most methane models could also largely benefit from an expanded description of lipid metabolism and hindgut fermentation. The purpose of the current review is to identify key aspects of rumen microbiology that could be incorporated into, or have improved representation within, a model of ruminant digestion and environmental emissions.
Journal of Anatomy | 2009
J.L. Ellis; Jeffrey J. Thomason; Ermias Kebreab; Kasim Zubair
The purpose of this paper is to analyse the effects of cranial size and shape in domestic dogs (Canis familiaris) on predicted forces of biting. In addition to continuous size‐shape analysis, nine size‐shape groups were developed based on three skull shape categories and three skull size categories. Bite forces were predicted from measurements made on dried skulls using two lever models of the skull, as well as simple models derived by regression analysis. Observed bite force values were not available for the database used in this study, so only comparisons between categories and models were undertaken. The effects of shape and size on scaled predicted bite forces were evaluated. Results show that bite force increases as size increases, and this effect was highly significant (P < 0.0001). The effect of skull shape on bite force was significant in medium and large dogs (P < 0.05). Significant differences were not evident in small dogs. Size × shape interactions were also significant (P < 0.05). Bite force predictions by the two lever models were relatively close to each other, whereas the regression models diverged slightly with some negative numbers for very small dogs. The lever models may thus be more robust across a wider range of skull size‐shapes. Results obtained here would be useful to the pet food industry for food product development, as well as to paleontologists interested in methods of estimating bite force from dry skulls.
Journal of Animal Science | 2012
J.L. Ellis; J. Dijkstra; A. Bannink; E. Kebreab; S. E. Hook; S. L. Archibeque
Monensin is a common feed additive used in various countries, where 1 of the associated benefits for use in beef cattle is improved efficiency of energy metabolism by the rumen bacteria, the animal, or both. Modeling fermentation-altering supplements is of interest, and thus, it is the purpose of this paper to quantify the change in VFA profile caused by monensin dose in high-grain-fed beef cattle. The developmental database used for meta-analysis included 58 treatment means from 16 studies from the published literature, and the proportional change in molar acetate, propionate, and butyrate (mol/100 mol) as well as total VFA (mM) with monensin feeding dose (mg/kg DM, concentration in the feed) was evaluated using the MIXED procedure (SAS Inst. Inc., Cary, NC) with the study treated as a random effect. The mean monensin dose in the literature database was 30.9 ± 3.70 mg/kg DM and ranged from 0.0 to 88.0 mg/kg DM. Mean DMI was 7.8 ± 0.26 kg DM/d, mean concentrate proportion of the diet was 0.87 ± 0.01, and mean treatment period was 42 ± 5.6 d. Results produced the following equations: proportional change in acetate (mol/100 mol) = -0.0634 (± 0.0323) × monensin (mg/kg DM)/100 (P = 0.068), proportional change in propionate (mol/100 mol) = 0.260 (± 0.0735) × monensin (mg/kg DM)/100 (P = 0.003), and proportional change in butyrate (mol/100 mol) = -0.335 (± 0.0916) × monensin (mg/kg DM)/100 (P = 0.002). The change in total VFA was not significantly related to monensin dose (P = 0.93). The results presented here indicate that the shift in VFA profile may be dose dependent, with increasing propionate and decreasing acetate and butyrate proportions (mol/100 mol). These equations could be applied within mechanistic models of rumen fermentation to represent the effect of monensin dose on the VFA profile in high-grain-fed beef cattle.
The Journal of Agricultural Science | 2010
A. Bannink; M. C. J. Smits; E. Kebreab; J.A.N. Mills; J.L. Ellis; A. Klop; J. Dijkstra
A dynamic, mechanistic model of enteric fermentation was used to investigate the effect of type and quality of grass forage, dry matter intake (DMI) and proportion of concentrates in dietary dry matter (DM) on variation in methane (CH4) emission from enteric fermentation in dairy cows. The model represents substrate degradation and microbial fermentation processes in rumen and hindgut and, in particular, the effects of type of substrate fermented and of pH on the production of individual volatile fatty acids and CH4 as end-products of fermentation. Effects of type and quality of fresh and ensiled grass were evaluated by distinguishing two N fertilization rates of grassland and two stages of grass maturity. Simulation results indicated a strong impact of the amount and type of grass consumed on CH4 emission, with a maximum difference (across all forage types and all levels of DMI) of 49 and 77% in g CH4/kg fat and protein corrected milk (FCM) for diets with a proportion of concentrates in dietary DM of 0·1 and 0·4, respectively (values ranging from 10·2 to 19·5 g CH4/kg FCM). The lowest emission was established for early cut, high fertilized grass silage (GS) and high fertilized grass herbage (GH). The highest emission was found for late cut, low-fertilized GS. The N fertilization rate had the largest impact, followed by stage of grass maturity at harvesting and by the distinction between GH and GS. Emission expressed in g CH4/kg FCM declined on average 14% with an increase of DMI from 14 to 18 kg/day for grass forage diets with a proportion of concentrates of 0·1, and on average 29% with an increase of DMI from 14 to 23 kg/day for diets with a proportion of concentrates of 0·4. Simulation results indicated that a high proportion of concentrates in dietary DM may lead to a further reduction of CH4 emission per kg FCM mainly as a result of a higher DMI and milk yield, in comparison to low concentrate diets. Simulation results were evaluated against independent data obtained at three different laboratories in indirect calorimetry trials with cows consuming GH mainly. The model predicted the average of observed values reasonably, but systematic deviations remained between individual laboratories and root mean squared prediction error was a proportion of 0·12 of the observed mean. Both observed and predicted emission expressed in g CH4/kg DM intake decreased upon an increase in dietary N:organic matter (OM) ratio. The model reproduced reasonably well the variation in measured CH4 emission in cattle sheds on Dutch dairy farms and indicated that on average a fraction of 0·28 of the total emissions must have originated from manure under these circumstances
Journal of Dairy Science | 2012
J.L. Ellis; J. Dijkstra; A.J. Parsons; G.R. Edwards; S. Rasmussen; E. Kebreab; A. Bannink
High-sugar grass varieties have received considerable attention for their potential ability to decrease N excretion in cattle. However, feeding high-sugar grasses alters the pattern of rumen fermentation, and no in vivo studies to date have examined this strategy with respect to another environmental pollutant: methane (CH(4)). Modeling allows us to examine potential outcomes of feeding strategies under controlled conditions, and can provide a useful framework for the development of future experiments. The purpose of the present study was to use a modeling approach to evaluate the effect of high-sugar grasses on simulated CH(4) emissions in dairy cattle. An extant dynamic, mechanistic model of enteric fermentation and intestinal digestion was used for this evaluation. A simulation database was constructed and analysis of model behavior was undertaken to simulate the effect of (1) level of water-soluble carbohydrate (WSC) increase in dietary dry matter, (2) change in crude protein (CP) and neutral detergent fiber (NDF) content of the plant with an increased WSC content, (3) level of N fertilization, and (4) presence or absence of grain feeding. Simulated CH(4) emissions tended to increase with increased WSC content when CH(4) was expressed as megajoules per day or percent of gross energy intake, but when CH(4) was expressed in terms of grams per kilogram of milk, results were much more variable due to the potential increase in milk yield. As a result, under certain conditions, CH(4) (g/kg of milk) decreased. The largest increases in CH(4) emissions (MJ/d or % gross energy intake) were generally seen when WSC increased at the expense of CP in the diet and this can largely be explained by the representation in the model of the type of volatile fatty acid produced. Effects were lower when WSC increased at the expense of NDF, and intermediary when WSC increased at the expense of a mixture of CP and NDF. When WSC increased at the expense of NDF, simulated milk yield increased and, therefore, CH(4) (g/kg of milk) tended to decrease. Diminished increases of CH(4) (% gross energy intake or g/kg of milk) were simulated when DMI was increased with elevated WSC content. Simulation results suggest that high WSC grass, as a strategy to mitigate N emission, may increase CH(4) emissions, but that results depend on the grass composition, DMI, and the units chosen to express CH(4). Overall, this project demonstrates the usefulness of modeling for hypothesis testing in the absence of observed experimental results.
Journal of Anatomy | 2008
J.L. Ellis; Jeffrey J. Thomason; Ermias Kebreab
Estimates of biting forces are widely used in paleontological and comparative studies of feeding mechanics and performance, and are usually derived from lever models based on measurements made on the skull that are relevant to the mechanics of the masticatory system. Owing to assumptions and unmeasurable errors in their estimation, such values are used comparatively rather than as absolute estimates. The purpose of this paper was to provide calibration of post‐mortem calculated bite force estimates by comparing them to in vivo forces derived from a sample of 20 domestic dogs (Canis familiaris) during muscle stimulation under general anaesthesia. Two lever models previously described in the literature were used to estimate post‐mortem values, and regression analysis was also performed to derive best‐fit equations against a number of morphometric measurements on the skull. The ranges of observed forces in vivo were 147–946 N at the canine, and 524–3417 N at the second molar. The lever models substantially underestimated these forces, giving mean values between 39% and 61% of the observed means. Predictability was considerably improved by removing the linear bias and deviation of the regression slope from unity with an adjustment equation. Best‐fit statistical models developed on these animals performed considerably better (calculated means within 0.54% of observed means) and included easily measureable variables such as bodyweight, dimensions of the temporalis fossa and out‐lever from the jaw joint to the biting tooth. These data should lead to more accurate absolute, rather than relative, estimates of biting forces for other extant and fossil canids, and other carnivorans by extrapolation.
Journal of Dairy Science | 2011
J.L. Ellis; J. Dijkstra; A. Bannink; A.J. Parsons; S. Rasmussen; G.R. Edwards; E. Kebreab
High-sugar grass varieties have received considerable attention for their potential to reduce nitrogen (N) excretion and increase milk yield in cattle. However, considerable variation exists in the magnitude of response in published results. The purpose of this study is to explain the variation in response using a dynamic mechanistic model to predict observed N and milk yield results from the literature, and from simulated data. Examined effects were (1) water-soluble carbohydrate [WSC; g/kg of dry matter (DM)] increase; (2) change in crude protein (CP) and neutral detergent fiber (NDF) content of the plant with WSC increase; and (3) the level of N fertilization. The database for evaluation of model N and milk yield predictions consisted of 4 published studies with 28 treatment means for which high-sugar grasses were being evaluated. Water-soluble carbohydrate content of the diets ranged from 95 to 248 g/kg of DM, CP content ranged from 115 to 263 g/kg of DM, and the NDF content ranged from 400 to 568 g/kg of DM. Urine N, milk N, and total N excretion were predicted well by the model and followed the directional pattern of observed values within each study. Simulation results showed that the N utilization ratio increased as the WSC content of the diet increased, but to varying degrees depending on the grass scenario examined. The greatest benefit in terms of N utilization ratio and urine N levels were seen when the WSC content of grass increased at the expense of CP, followed by a 50:50 CP and NDF mix, followed by a trade for NDF. Simulated milk yield decreased slightly when WSC increased at the expense of CP, increased slightly when it increased at the expense of a CP and NDF mix, and increased most when WSC increased at the expense of NDF. Results were amplified slightly under conditions of low-N fertilization and in the absence of grain feeding. Overall, modeling is useful as an explanatory tool. The variation from results in the literature with high-WSC grass feeding may be, at least in part, the result of the level of WSC (g/kg of DM) increase, concurrent changes occurring within the CP and NDF fractions of the plant, and the plane of nutrition of the diet (grain feeding and N fertilization levels).
Journal of Dairy Science | 2015
B. Hatew; S.C. Podesta; H.H. van Laar; W.F. Pellikaan; J.L. Ellis; J. Dijkstra; A. Bannink
The objective of this study was to investigate the effects of starch varying in rate of fermentation and level of inclusion in the diet in exchange for fiber on methane (CH4) production of dairy cows. Forty Holstein-Friesian lactating dairy cows of which 16 were rumen cannulated were grouped in 10 blocks of 4 cows each. Cows received diets consisting of 60% grass silage and 40% concentrate (dry matter basis). Cows within block were randomly assigned to 1 of 4 different diets composed of concentrates that varied in rate of starch fermentation [slowly (S) vs. rapidly (R) rumen fermentable; native vs. gelatinized corn grain] and level of starch (low vs. high; 270 vs. 530g/kg of concentrate dry matter). Results of rumen in situ incubations confirmed that the fractional rate of degradation of starch was higher for R than S starch. Effective rumen degradability of organic matter was higher for high than low starch and also higher for R than S starch. Increased level of starch, but not starch fermentability, decreased dry matter intake and daily CH4 production. Milk yield (mean 24.0±1.02kg/d), milk fat content (mean 5.05±0.16%), and milk protein content (mean 3.64±0.05%) did not differ between diets. Methane expressed per kilogram of fat- and protein-corrected milk, per kilogram of dry matter intake, or as a fraction of gross energy intake did not differ between diets. Methane expressed per kilogram of estimated rumen-fermentable organic matter (eRFOM) was higher for S than R starch-based diets (47.4 vs. 42.6g/kg of eRFOM) and for low than high starch-based diets (46.9 vs. 43.1g/kg of eRFOM). Apparent total-tract digestibility of neutral detergent fiber and crude protein were not affected by diets, but starch digestibility was higher for diets based on R starch (97.2%) compared with S starch (95.5%). Both total volatile fatty acid concentration (109.2 vs. 97.5mM) and propionate proportion (16.5 vs. 15.8mol/100mol) were higher for R starch- compared with S starch-based diets but unaffected by the level of starch. Total N excretion in feces plus urine and N retained were unaffected by dietary treatments, and similarly energy intake and output of energy in milk expressed per unit of metabolic body weight were not affected by treatments. In conclusion, an increased rate of starch fermentation and increased level of starch in the diet of dairy cattle reduced CH4 produced per unit of eRFOM but did not affect CH4 production per unit of feed dry matter intake or per unit of milk produced.
7th International Workshop on Modelling Nutrient Digestion and Utilisation in Farm Animals, Paris, France, 10-12 September, 2009. | 2011
J. Dijkstra; J.L. Ellis; E. Kebreab; Secundino López; J.W. Reijs; A. Bannink
To assess the relation between emission of methane (CH4) and faecal and urinary losses of nitrogen (N) in dairy cattle, various dietary strategies were evaluated using a mechanistic model of fermentation and digestion processes. To simulate faecal and urinary composition, an extant dynamic, mechanistic model of rumen function and post-absorptive nutrient supply was extended with static equations that describe intestinal digestion and hindgut fermentation. The extended model predicts organic matter, carbon and N output in faeces and urine. Methane emissions were simulated using the same model including a mechanistic description of methanogenesis in the rumen and in the hindgut. Four different types of grass silage were explored at high and low N fertilization levels and early or late cutting. For each grass silage, 10 supplementation strategies that differed in level and type of supplement (no supplement, maize silage, straw, beet pulp, potatoes) and level of concentrate (20 or 40% of total diet DM) were studied. Simulated total N and CH4 excretion ranged from 211 to 588 g/d and 334 to 441 g/d, respectively, with a small, positive correlation (r2=0.15). When expressed per unit fat and protein corrected milk (FPCM), a reduced N excretion (g N/kg FPCM) was associated with increased CH4 emission (g CH4 / kg FPCM) although the coefficient of determination was small (r2=0.22). This relationship varied between different treatments. For example, reducing N fertilization level lowered N excretion per kg FPCM, but increased CH4 emission per kg FPCM, whereas supplementation with maize silage reduced both N excretion and CH4 emission per kg FPCM. The ratio of urea-N in urine to total N excretion was negatively related to emission of CH4 per kg FPCM (r2=0.54). This is of particular concern since urea in the urine, being quickly converted to ammonia, is susceptible to rapid volatilization. The present simulations indicate that measures to reduce N pollution from dairy cattle may increase CH4 emission and highlight an important area for experimental research.
Journal of Dairy Science | 2014
J.A.N. Mills; L.A. Crompton; J.L. Ellis; J. Dijkstra; A. Bannink; S.E. Hook; C. Benchaar
Current feed evaluation systems for ruminants are too imprecise to describe diets in terms of their acidosis risk. The dynamic mechanistic model described herein arises from the integration of a lactic acid (La) metabolism module into an extant model of whole-rumen function. The model was evaluated using published data from cows and sheep fed a range of diets or infused with various doses of La. The model performed well in simulating peak rumen La concentrations (coefficient of determination = 0.96; root mean square prediction error = 16.96% of observed mean), although frequency of sampling for the published data prevented a comprehensive comparison of prediction of time to peak La accumulation. The model showed a tendency for increased La accumulation following feeding of diets rich in nonstructural carbohydrates, although less-soluble starch sources such as corn tended to limit rumen La concentration. Simulated La absorption from the rumen remained low throughout the feeding cycle. The competition between bacteria and protozoa for rumen La suggests a variable contribution of protozoa to total La utilization. However, the model was unable to simulate the effects of defaunation on rumen La metabolism, indicating a need for a more detailed description of protozoal metabolism. The model could form the basis of a feed evaluation system with regard to rumen La metabolism.