J. M. Barrett
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. M. Barrett.
Journal of Geophysical Research | 2006
K. E. Herkenhoff; S. W. Squyres; Robert S. Anderson; Brent A. Archinal; Raymond E. Arvidson; J. M. Barrett; Kris J. Becker; James F. Bell; Charles John Budney; Nathalie A. Cabrol; Mary G. Chapman; Debbie Cook; Bethany L. Ehlmann; Jack D. Farmer; Brenda J. Franklin; Lisa R. Gaddis; D. M. Galuszka; Patricia Garcia; Trent M. Hare; Elpitha Howington-Kraus; Jeffrey R. Johnson; Sarah Stewart Johnson; K. M. Kinch; Randolph L. Kirk; Ella Mae Lee; Craig Leff; Mark T. Lemmon; M. B. Madsen; J. N. Maki; Kevin F. Mullins
The Microscopic Imager (MI) on the Mars Exploration Rover Spirit has returned images of Mars with higher resolution than any previous camera system, allowing detailed petrographic and sedimentological studies of the rocks and soils at the Gusev landing site. Designed to simulate a geologists hand lens, the MI is mounted on Spirits instrument arm and can resolve objects 0.1 mm in size or larger. This paper provides an overview of MI operations, data calibration, processing, and analysis of MI data returned during the first 450 sols (Mars days) of the Spirit landed mission. The primary goal of this paper is to facilitate further analyses of MI data by summarizing the methods used to acquire and process the data, the radiometric and geometric accuracy of MI data products, and the availability of archival products. In addition, scientific results of the MI investigation are summarized. MI observations show that poorly sorted soils are common in Gusev crater, although aeolian bedforms have well-sorted coarse sand grains on their surfaces. Abraded surfaces of plains rocks show igneous textures, light-toned veins or fracture-filling minerals, and discrete coatings. The rocks in the Columbia Hills have a wide variety of granular textures, consistent with volcaniclastic or impact origins. Case hardening and submillimeter veins observed in the rocks as well as soil crusts and cemented clods imply episodic subsurface aqueous fluid movement, which has altered multiple geologic units in the Columbia Hills. The MI also monitored Spirits solar panels and the magnets on the rovers deck.
Journal of Geophysical Research | 2008
K. E. Herkenhoff; John P. Grotzinger; Andrew H. Knoll; Scott M. McLennan; Catherine M. Weitz; Aileen Yingst; Robert S. Anderson; Brent A. Archinal; Raymond E. Arvidson; J. M. Barrett; Kris J. Becker; James F. Bell; Charles John Budney; Mary G. Chapman; Debbie Cook; B. L. Ehlmann; Brenda J. Franklin; Lisa R. Gaddis; D. M. Galuszka; Patricia Garcia; Paul Geissler; Trent M. Hare; Elpitha Howington-Kraus; Jeffrey R. Johnson; Laszlo P. Keszthelyi; Randolph L. Kirk; Peter Denham Lanagan; Ella Mae Lee; Craig Leff; J. N. Maki
The Microscopic Imager (MI) on the Mars Exploration Rover Opportunity has returned images of Mars with higher resolution than any previous camera system, allowing detailed petrographic and sedimentological studies of the rocks and soils at the Meridiani Planum landing site. Designed to simulate a geologists hand lens, the MI is mounted on Opportunitys instrument arm and can resolve objects 0.1 mm across or larger. This paper provides an overview of MI operations, data calibration, and analysis of MI data returned during the first 900 sols (Mars days) of the Opportunity landed mission. Analyses of Opportunity MI data have helped to resolve major questions about the origin of observed textures and features. These studies support eolian sediment transport, rather than impact surge processes, as the dominant depositional mechanism for Burns formation strata. MI stereo observations of a rock outcrop near the rim of Erebus Crater support the previous interpretation of similar sedimentary structures in Eagle Crater as being formed by surficial flow of liquid water. Well-sorted spherules dominate ripple surfaces on the Meridiani plains, and the size of spherules between ripples decreases by about 1 mm from north to south along Opportunitys traverse between Endurance and Erebus craters.
Journal of Geophysical Research | 1999
Lisa R. Gaddis; R. L. Kirk; James Richard Johnson; L. A. Soderblom; A. W. Ward; J. M. Barrett; Kris J. Becker; T. Becker; J. Blue; Debbie Cook; Eric M. Eliason; Trent M. Hare; Elpitha Howington-Kraus; C. Isbell; Ella Mae Lee; B. L. Redding; Robert Sucharski; T. L. Sucharski; Peter W. H. Smith; Daniel T. Britt
The Imager for Mars Pathfinder (IMP) acquired more than 16,000 images and provided panoramic views of the surface of Mars at the Mars Pathfinder landing site in Ares Vallis. This paper describes the stereoscopic, multispectral IMP imaging sequences and focuses on their use for digital mapping of the landing site and for deriving cartographic products to support science applications of these data. Two-dimensional cartographic processing of IMP data, as performed via techniques and specialized software developed for ISIS (the U.S. Geological Survey image processing software package), is emphasized. Cartographic processing of IMP data includes ingestion, radiometric correction, establishment of geometric control, coregistration of multiple bands, reprojection, and mosaicking. Photogrammetric processing, an integral part of this cartographic work which utilizes the three-dimensional character of the IMP data, supplements standard processing with geometric control and topographic information [Kirk et al., this issue]. Both cartographic and photogrammetric processing are required for producing seamless image mosaics and for coregistering the multispectral IMP data. Final, controlled IMP cartographic products include spectral cubes, panoramic (360° azimuthal coverage) and planimetric (top view) maps, and topographic data, to be archived on four CD-ROM volumes. Uncontrolled and semicontrolled versions of these products were used to support geologic characterization of the landing site during the nominal and extended missions. Controlled products have allowed determination of the topography of the landing site and environs out to ∼60 m, and these data have been used to unravel the history of large- and small-scale geologic processes which shaped the observed landing site. We conclude by summarizing several lessons learned from cartographic processing of IMP data.
Planetary and Space Science | 2007
Laurence A. Soderblom; Randolph L. Kirk; Jonathan I. Lunine; Jeffrey A. Anderson; Kevin H. Baines; Jason W. Barnes; J. M. Barrett; Robert H. Brown; Bonnie J. Buratti; Roger N. Clark; Dale P. Cruikshank; Charles Elachi; Michael A. Janssen; R. Jaumann; Erich Karkoschka; Stephane Le Mouelic; Rosaly M. C. Lopes; Ralph D. Lorenz; Thomas B. McCord; Philip D. Nicholson; Jani Radebaugh; Bashar Rizk; Christophe Sotin; Ellen R. Stofan; T. L. Sucharski; Martin G. Tomasko; Stephen D. Wall
Journal of Geophysical Research | 2003
Randolph L. Kirk; Elpitha Howington-Kraus; B. L. Redding; D. M. Galuszka; Trent M. Hare; Brent A. Archinal; Laurence A. Soderblom; J. M. Barrett
Archive | 2001
Eric M. Eliason; John D. Anderson; J. M. Barrett; Karl J. Becker; Theodore Becker; David Cook; Laurence A. Soderblom; T. L. Sucharski; Keith Thompson
Archive | 2009
S. W. Akins; Lisa R. Gaddis; Karl J. Becker; J. M. Barrett; M. S. Bailen; Trent M. Hare; Laurence A. Soderblom; Richard A. Raub
Journal of Geophysical Research | 2003
Randolph L. Kirk; Elpitha Howington-Kraus; B. L. Redding; D. M. Galuszka; Trent M. Hare; Brent A. Archinal; Laurence A. Soderblom; J. M. Barrett
Journal of Geophysical Research | 2003
Randolph L. Kirk; Elpitha Howington-Kraus; B. L. Redding; D. M. Galuszka; Trent M. Hare; Brent A. Archinal; Laurence A. Soderblom; J. M. Barrett
Archive | 1994
Mary G. Chapman; Randolph L. Kirk; J. M. Barrett