Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. M. Moorby is active.

Publication


Featured researches published by J. M. Moorby.


Journal of Dairy Science | 2009

Assessment of dietary ratios of red clover and grass silages on milk production and milk quality in dairy cows

J. M. Moorby; Michael Richard Lee; David R. Davies; Eun Joong Kim; G.R. Nute; N.M. Ellis; Nigel D. Scollan

Twenty-four multiparous Holstein-Friesian dairy cows were used in a replicated 4 x 4 Latin square changeover design experiment to test the effects of changing from ryegrass (Lolium perenne) silage to red clover (Trifolium pratense) silage in graded proportions on feed intakes, milk production, milk organoleptic qualities, and whole-body nitrogen partitioning. Four dietary treatments, comprising ad libitum access to 1 of 4 forage mixtures plus a standard allowance of 4 kg/d dairy concentrates, were offered. The 4 forage mixtures were, on a dry matter (DM) basis: 1) 100% grass silage, 2) 66% grass silage: 34% red clover silage, 3) 34% grass silage: 66% red clover silage, and 4) 100% red clover silage. In each of 4 experimental periods, there were 21 d for adaptation to diets and 7 d for measurements. There was an increase in both DM intakes and milk yields as the proportion of red clover in the diet increased. However, the increase in milk yield was not as great as the increase in DM intake, so that the efficiency of milk production, in terms of yield (kg) of milk per kg of DM intake, decreased. The concentrations of protein, milk fat, and the shorter chain saturated fatty acids decreased, whereas C18 polyunsaturated fatty acids (PUFA) and long-chain PUFA (C20+) increased as the proportion of red clover in the diet increased. There was little effect of dietary treatment on the organoleptic qualities of milk as assessed by taste panel analysis. There were no effects on the aroma of milk, on aftertaste, or overall liking of the milk. Milk was thicker and creamier in color when cows were fed grass silage compared with red clover silage. The flavor of milk was largely unaffected by dietary treatment. In conclusion, increasing the proportion of red clover in the diet of dairy cows increased feed intakes and milk yields, decreased the concentration of fat and protein in milk, increased PUFA for healthiness, and had little effect on milk organoleptic characteristics.


Journal of Dairy Science | 2011

Effects of dietary protein concentration and balance of absorbable amino acids on productive responses of dairy cows fed corn silage-based diets

A.R.J. Cabrita; Richard J. Dewhurst; D.S.P. Melo; J. M. Moorby; A.J.M. Fonseca

A cyclical changeover design experiment (3-wk periods; 12-wk total) was conducted to evaluate whether improving the balance of absorbable AA would allow the feeding of less crude protein (CP) without compromising production, thereby reducing the potential environmental pollution from dairy farms. Sixteen multiparous Holstein cows were assigned to 1 of 8 dietary treatments as total mixed rations (TMR) containing [dry matter (DM) basis] 45% corn silage, 5% coarsely chopped wheat straw, and 50% concentrate mixture. The 8 treatments were formulated to differ in dietary CP (14 and 16%; DM basis) and in the balance of absorbable AA achieved by changing the main protein source (MPS) of the concentrate mixtures [replacing soybean meal (SBM) with corn byproducts (CBP), dried corn distillers grains (DDG), and some corn gluten meal], and by adding a mixture of rumen-protected Lys and Met (RPLM). Feeding lactating dairy cows corn silage-based diets with 16% CP promoted significantly higher DM intakes and milk yields, and lower feed N-use efficiency than feeding diets with 14% CP. Replacing SBM with CBP significantly increased milk yields and decreased milk fat and protein concentrations, but had no effect on the efficiency of conversion of feed N into milk N. With 16% CP diets, the addition of RPLM decreased feed N use efficiency. A significant effect was observed for the MPS × RPLM interaction on milk protein concentrations. Plasma Lys concentration was lower with diets based on CBP, and plasma Met increased with RPLM. We did not find clear benefits of RPLM in facilitating a reduction of dietary protein without loss of production.


PLOS ONE | 2014

Mixed grazing systems benefit both upland biodiversity and livestock production

Mariecia D. Fraser; J. M. Moorby; James Vale; Darren M. Evans

Background With world food demand expected to double by 2050, identifying farming systems that benefit both agricultural production and biodiversity is a fundamentally important challenge for the 21st century, but this has to be achieved in a sustainable way. Livestock grazing management directly influences both economic outputs and biodiversity on upland farms while contributing to potentially damaging greenhouse gas emissions, yet no study has attempted to address these impacts simultaneously. Methods Using a replicated, landscape-scale field experiment consisting of five management ‘systems’ we tested the effects of progressively altering elements within an upland farming system, viz i) incorporating cattle grazing into an upland sheep system, ii) integrating grazing of semi-natural rough grazing into a mixed grazing system based on improved pasture, iii) altering the stocking ratio within a mixed grazing system, and iv) replacing modern crossbred cattle with a traditional breed. We quantified the impacts on livestock productivity and numbers of birds and butterflies over four years. Results, Conclusion and Significance We found that management systems incorporating mixed grazing with cattle improve livestock productivity and reduce methane emissions relative to sheep only systems. Systems that also included semi-natural rough grazing consistently supported more species of birds and butterflies, and it was possible to incorporate bouts of summer grazing of these pastures by cattle to meet habitat management prescriptions without compromising cattle performance overall. We found no evidence that the system incorporating a cattle breed popular as a conservation grazer was any better for bird and butterfly species richness than those based on a mainstream breed, yet methane emissions from such a system were predicted to be higher. We have demonstrated that mixed upland grazing systems not only improve livestock production, but also benefit biodiversity, suggesting a ‘win-win’ solution for farmers and conservationists.


Journal of Dairy Science | 2013

Estimation of feed crude protein concentration and rumen degradability by Fourier-transform infrared spectroscopy

Alejandro Belanche; M.R. Weisbjerg; Gordon G. Allison; C. J. Newbold; J. M. Moorby

Currently, rapid methods are needed for feed analysis. This study examined the potential of Fourier-transform infrared (FTIR) spectroscopy to predict the nutritional value of a wide range of feeds for ruminants, as an alternative to the in situ technique. Moreover, we investigated whether universal equations could be developed that would allow the low-cost determination of crude protein (CP) concentrations and their kinetics of degradation into the rumen. Protein nutritional values of 663 samples comprising 80 different feed types were determined in terms of concentrations of CP, water-soluble CP (CP(WS)), total-tract mobile bag CP digestibility (CP(TTD)), and in situ CP degradability, including the rumen soluble fraction (CP(A)), the degradable but not soluble fraction (CP(B)), rate of CP(B) degradation (CP(C)), effective degradability (CP(ED)), and potential degradability (CPPD). Infrared spectra of dry samples were collected by attenuated total reflectance from 4000 to 600 cm(-1). Models were developed by partial least squares (PLS) regression in a randomly selected subset of samples, and the precision of the equations was confirmed by using an external validation set. Analysis by FTIR spectroscopy was sufficiently sensitive to allow the accurate prediction of sample CP concentration (R(2)=0.92) and to classify feeds according to their CPWS concentrations using universal models (R(2)=0.78) that included all sample types. Moreover, substantial improvements in predictions were observed when samples were subdivided in groups. Models for forages led to accurate predictions of CP(WS) and fractions CP(A) and CP(B) (R(2)>0.83), whereas models for CP(TTD) and CP(ED) could be used for screening purposes (R(2)>0.67). This study showed that models for protein-rich concentrates alone could also be used for screening according to the feed concentrations of CP(WS), CP(TTD), CP(ED), CP(A), and CP(B), but models for energy-rich concentrates gave relatively poor predictions. The general difficulty observed in predicting CP(C) is because of a low correlation between FTIR spectra and the kinetics of CP degradation, which may be the result of large variation in the reference method (i.e., in situ degradation studies) and perhaps also because of the presence of compounds that can modify the CP degradation pattern in the rumen. In conclusion, FTIR spectroscopy should be considered as a low-cost alternative in the feed evaluation industry.


Journal of Dairy Science | 2014

Measurement of rumen dry matter and neutral detergent fiber degradability of feeds by Fourier-transform infrared spectroscopy

Alejandro Belanche; M.R. Weisbjerg; Gordon G. Allison; C. J. Newbold; J. M. Moorby

This study explored the potential of partial least squares (PLS) and Fourier-transform infrared spectroscopy (FTIR) to predict rumen dry matter (DM) and neutral detergent fiber (NDF) degradation parameters of a wide range of feeds for ruminants, as an alternative to the in situ method. In total, 663 samples comprising 80 different feed types were analyzed. In situ DM and NDF degradabilities were determined as follows: effective degradability (ED), rumen soluble fraction (A), degradable but not soluble fraction (B), rate of degradation of the B fraction (C), and indigestible NDF (iNDF). Infrared spectra of dry samples were collected by attenuated total reflectance from 600 to 4000cm(-1). Feeds were randomly classified into 2 subsets of samples with representation of all feed types; one subset was used to develop regression models using partial least squares, and the second subset was used to conduct an external validation of the models. This study indicated that universal models containing all feed types and specific models containing concentrate feeds could provide only a relatively poor estimation of in situ DM degradation parameters because of compositional heterogeneity. More research, such as a particle size distribution analysis, is required to determine whether this lack of accuracy was due to limitations of the FTIR approach, or simply due to methodological error associated with the in situ method. This latter hypothesis may explain the low accuracy observed in the prediction of degradation rates if there was physical leakage of fine particles from the mesh bags used during in situ studies. In contrast, much better predictions were obtained when models were developed for forage feeds alone. Models for forages led to accurate predictions of DMA, DMB, NDFED, and NDF concentration (R(2)=0.91, 0.89, 0.85, and 0.79, standard error = 4.34, 5.97, 4.59, and 4.41% of DM, respectively), and could be used for screening of DMED, NDFC, and iNDF. These models relied on certain regions of the FTIR spectrum (900-1150 and 1500-1700cm(-1)), which are mainly compatible with absorption of plant cell wall components, such as cellulose, pectin, lignin, cutin, and suberin, but also with nonstructural carbohydrates and certain active compounds. In conclusion, FTIR spectroscopy could be considered a low-cost alternative to in situ measurements in feed evaluation.


PLOS ONE | 2014

Traditional vs modern: role of breed type in determining enteric methane emissions from cattle grazing as part of contrasting grassland-based systems

Mariecia D. Fraser; Hannah Rachael Fleming; J. M. Moorby

Ruminant livestock turn forages and poor-quality feeds into human edible products, but enteric methane (CH4) emissions from ruminants are a significant contributor to greenhouse gases (GHGs) and hence to climate change. Despite the predominance of pasture-based beef production systems in many parts of Europe there are little data available regarding enteric CH4 emissions from free-ranging grazing cattle. It is possible that differences in physiology or behaviour could influence comparative emissions intensities for traditional and modern breed types depending on the nutritional characteristics of the herbage grazed. This study investigated the role of breed type in influencing CH4 emissions from growing beef steers managed on contrasting grasslands typical of intensive (lowland) and extensive (upland) production systems. Using the SF6 dilution technique CH4 emissions were estimated for a modern, fast-growing crossbred (Limousin cross) and a smaller and hardier native breed (Welsh Black) when grazing lowland perennial ryegrass (high nutritional density, low sward heterogeneity) and semi-improved upland pasture (low/medium nutritional density, high sward heterogeneity). Live-weight gain was substantially lower for steers on the upland system compared to the lowland system (0.31 vs. 1.04 kg d−1; s.e.d. = 0.085 kg d−1; P<0.001), leading to significant differences in estimated dry matter intakes (8.0 vs. 11.1 kg DM d−1 for upland and lowland respectively; s.e.d. = 0.68 kg DM d−1; P<0.001). While emissions per unit feed intake were similar for the lowland and upland systems, CH4 emissions per unit of live-weight gain (LWG) were substantially higher when the steers grazed the poorer quality hill pasture (760 vs 214 g kg−1 LWG; s.e.d. = 133.5 g kg−1 LWG; P<0.001). Overall any effects of breed type were relatively small relative to the combined influence of pasture type and location.


Frontiers in Microbiology | 2017

Characterization of the Microbiome along the Gastrointestinal Tract of Growing Turkeys

Toby J. Wilkinson; A. A. Cowan; Hannah Vallin; L. A. Onime; Linda Boniface Oyama; Simon J. S. Cameron; Charlotte Gonot; J. M. Moorby; Kate Waddams; Vincent Theobald; David Leemans; S. Bowra; C. Nixey; Sharon A. Huws

The turkey microbiome is largely understudied, despite its relationship with bird health and growth, and the prevalence of human pathogens such as Campylobacter spp. In this study we investigated the microbiome within the small intestine (SI), caeca (C), large intestine (LI), and cloaca (CL) of turkeys at 6, 10, and 16 weeks of age. Eight turkeys were dissected within each age category and the contents of the SI, C, LI, and CL were harvested. 16S rDNA based QPCR was performed on all samples and samples for the four locations within three birds/age group were sequenced using ion torrent-based sequencing of the 16S rDNA. Sequencing data showed on a genus level, an abundance of Lactobacillus, Streptococcus, and Clostridium XI (38.2, 28.1, and 13.0% respectively) irrespective of location and age. The caeca exhibited the greatest microbiome diversity throughout the development of the turkey. PICRUSt data predicted an array of bacterial function, with most differences being apparent in the caeca of the turkeys as they matured. QPCR revealed that the caeca within 10 week old birds, contained the most Campylobacter spp. Understanding the microbial ecology of the turkey gastrointestinal tract is essential in terms of understanding production efficiency and in order to develop novel strategies for targeting Campylobacter spp.


Animal Science | 2005

Effects of ensiled forage legumes on performance of twin-bearing ewes and their progeny

Marijntje H. M. Speijers; Mariecia D. Fraser; W. Haresign; Vincent Theobald; J. M. Moorby

Speijers, M. H. M., Fraser, M. D., Haresign, W., Theobald, V. J., Moorby, J. M. (2005). Effects of ensiled forage legumes on performance of twin-bearing ewes and their progeny. Animal Science, 81 (2), 271-282


Journal of Dairy Science | 2008

Comparison of Red Clover and Ryegrass Silage for Dry Cows and Influence on Subsequent Lactation Performance

J. M. Moorby; Paul H. Robinson; William J. Fisher; Roger T. Evans

The objective of this study was to investigate the use of red clover (RC) silage as a forage for dry dairy cows, primarily relative to its impact on tissue mobilization and repletion during the transition period and performance during the first 10 wk of lactation. Forty multiparous lactating Holstein-Friesian dairy cows were divided into 2 paired groups at 70 d before predicted calving dates; a subset (n = 8) of the cows were used for N and P balance measurements twice during the study. From the start of the experiment until 4 wk before predicted calving date all cows were offered ad libitum access to a ryegrass (RG) silage with no concentrate. At 4 wk before predicted calving date, one group of cows remained on the same diet, and the other group was changed to a diet of ad libitum access to RC silage. There was no difference in feed intakes, but CP intake was higher in cows fed RC silage, whereas ME intake was higher in cows fed RG silage. Cows fed RG silage gained more weight over the last 4 wk of the dry period (DP) than those fed RC silage, but there was no treatment effect on BCS. During the DP fecal N excretion was higher for cows fed RC silage, and there were no treatment differences in urine N excretion or overall N balance. At birth, calves from cows fed the RC silage were heavier. After calving, all cows were offered the same diet of ad libitum access to the same RG silage and a standard lactation concentrate. During the first 10 wk of lactation there was no difference in feed intake between the 2 previous treatment groups, and feed intake reached a maximum at approximately 4 wk of lactation. Cows on the RG treatment during the DP gained more longissimus dorsi muscle depth during the DP and retained it during early lactation. Mobilization of this muscle occurred before calving, indicating repartitioning of amino acids to other body tissues. There were no carryover effects of DP treatment on apparent partitioning of N from diet to milk, urine, or feces at wk 3 of lactation. Feeding RC silage during the DP had almost no impact on subsequent performance of dairy cows in early lactation, probably because the 2 silages were nutritionally very similar.


PLOS ONE | 2018

Evaluating lifetime nitrogen use efficiency of dairy cattle: A modelling approach

Andreas Foskolos; J. M. Moorby

The increased nitrogen (N) use efficiency in cattle farming is proposed as a key action to improve N management and reduce the environmental impact of cattle farming systems. Most attention has been given to lactating cow nutrition, excluding the elements of fertility, disease, and the non-lactating animals within the herd. Therefore, the aim of the current study was to develop a herd-level simulation model incorporating these elements to assess dairy farm N use efficiency. We developed a cattle N use efficiency (CNE) model with six primary compartments: (i) heifer growth, (ii) heifer removal, (iii) pregnancy, (iv) cow removal, (v) disease and fertility, and (vi) milk production. The CNE model calculates N loss or gain for each compartment, and then calculates the lifetime N loss or gain taking into account the replacement rate (rep) and/or the corresponding number of lactations in a herd (Lact = 1/rep). Finally, three N use efficiencies were estimated: (i) ReplNE: replacement cattle N use efficiency, (ii) LactNE: lifetime N use efficiency for lactation, and (iii) LNE: lifetime N use efficiency. The sensitivity of the model to variation in farm- and animal-related input values was evaluated using Monte Carlo simulation. Values for a model dairy farm were used based on published data reflecting typical dairy farming practices in the United Kingdom. To assist reporting net values of main N outputs, a dairy herd of 100 lactating cows was modelled. Productive N outputs (1000s of kg) over the course of an animal’s lifetime, partitioned into milk and meat, were dominated by milk production (89% of total N output). We estimated a mean ReplNE of 23.7%, affected most by the last stage of heifer growth. The Monte Carlo sensitivity analysis suggested that variation in time to first calving (T1stCal) might cause larger changes on ReplNE than variation in feed. The sensitivity analysis revealed a strong positive correlation between dietary oriented milk N use efficiency (MNE) and LactNE and LNE (r = 0.99 and 0.97 for LactNE and LNE, respectively). However, our study highlighted two other model variables that affected LNE. Variation in calving interval (CI; r = −0.15) and T1stCal (r = −0.15) may cause measurable reductions of overall LNE. The first is an indicator of lactating cattle fertility, and the second an indicator of replacement cattle growth and fertility efficiency. In conclusion, with the current study we provided a dairy cattle herd model that is sensitive in elements of diet, fertility and health. Lifetime N use efficiency of dairy cattle is dominated by MNE, but we detected specific non-diet related variables that affect ReplNE, LactNE and LNE.

Collaboration


Dive into the J. M. Moorby's collaboration.

Top Co-Authors

Avatar

C. J. Newbold

Rowett Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge