Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J P Bolam is active.

Publication


Featured researches published by J P Bolam.


Neuroscience | 2001

Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network.

Peter J. Magill; J P Bolam; Mark D. Bevan

The subthalamic nucleus-globus pallidus network plays a central role in basal ganglia function and dysfunction. To determine whether the relationship between activity in this network and the principal afferent of the basal ganglia, the cortex, is altered in a model of Parkinsons disease, we recorded unit activity in the subthalamic nucleus-globus pallidus network together with cortical electroencephalogram in control and 6-hydroxydopamine-lesioned rats under urethane anaesthesia. Subthalamic nucleus neurones in control and 6-hydroxydopamine-lesioned animals exhibited low-frequency oscillatory activity, which was tightly correlated with cortical slow-wave activity (approximately 1 Hz). The principal effect of dopamine depletion was that subthalamic nucleus neurones discharged more intensely (233% of control) and globus pallidus neurones developed low-frequency oscillatory firing patterns, without changes in mean firing rate. Ipsilateral cortical ablation largely abolished low-frequency oscillatory activity in the subthalamic nucleus and globus pallidus. These data suggest that abnormal low-frequency oscillatory activity in the subthalamic nucleus-globus pallidus network in the dopamine-depleted state is generated by the inappropriate processing of rhythmic cortical input. A component (15-20%) of the network still oscillated following cortical ablation in 6-hydroxydopamine-lesioned animals, implying that intrinsic properties may also pattern activity when dopamine levels are reduced. The response of the network to global activation was altered by 6-hydroxydopamine lesions. Subthalamic nucleus neurones were excited to a greater extent than in control animals and the majority of globus pallidus neurones were inhibited, in contrast to the excitation elicited in control animals. Inhibitory responses of globus pallidus neurones were abolished by cortical ablation, suggesting that the indirect pathway is augmented abnormally during activation of the dopamine-depleted brain. Taken together, these results demonstrate that both the rate and pattern of activity of subthalamic nucleus and globus pallidus neurones are altered profoundly by chronic dopamine depletion. Furthermore, the relative contribution of rate and pattern to aberrant information coding is intimately related to the state of activation of the cerebral cortex.


Neuroscience | 2008

Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat.

Radha Goh Nair-Roberts; S. D. Chatelain-Badie; Elizabeth Benson; Helen White-Cooper; J P Bolam; Mark A. Ungless

Midbrain dopamine neurons in the ventral tegmental area, substantia nigra and retrorubral field play key roles in reward processing, learning and memory, and movement. Within these midbrain regions and admixed with the dopamine neurons, are also substantial populations of GABAergic neurons that regulate dopamine neuron activity and have projection targets similar to those of dopamine neurons. Additionally, there is a small group of putative glutamatergic neurons within the ventral tegmental area whose function remains unclear. Although dopamine neurons have been intensively studied and quantified, there is little quantitative information regarding the GABAergic and glutamatergic neurons. We therefore used unbiased stereological methods to estimate the number of dopaminergic, GABAergic and glutamatergic cells in these regions in the rat. Neurons were identified using a combination of immunohistochemistry (tyrosine hydroxylase) and in situ hybridization (glutamic acid decarboxylase mRNA and vesicular glutamate transporter 2 mRNA). In substantia nigra pars compacta 29% of cells were glutamic acid decarboxylase mRNA-positive, 58% in the retrorubral field and 35% in the ventral tegmental area. There were further differences in the relative sizes of the GABAergic populations in subnuclei of the ventral tegmental area. Thus, glutamic acid decarboxylase mRNA-positive neurons represented 12% of cells in the interfascicular nucleus, 30% in the parabrachial nucleus, and 45% in the parainterfascicular nucleus. Vesicular glutamate transporter 2 mRNA-positive neurons were present in the ventral tegmental area, but not substantia nigra or retrorubral field. They were mainly confined to the rostro-medial region of the ventral tegmental area, and represented approximately 2–3% of the total neurons counted (∼1600 cells). These results demonstrate that GABAergic and glutamatergic neurons represent large proportions of the neurons in what are traditionally considered as dopamine nuclei and that there are considerable heterogeneities in the proportions of cell types in the different dopaminergic midbrain regions.


The Journal of Neuroscience | 2008

Disrupted Dopamine Transmission and the Emergence of Exaggerated Beta Oscillations in Subthalamic Nucleus and Cerebral Cortex

Nicolas Mallet; Alek Pogosyan; Andrew Sharott; Jozsef Csicsvari; J P Bolam; Peter Brown; Peter J. Magill

In the subthalamic nucleus (STN) of Parkinsons disease (PD) patients, a pronounced synchronization of oscillatory activity at beta frequencies (15–30 Hz) accompanies movement difficulties. Abnormal beta oscillations and motor symptoms are concomitantly and acutely suppressed by dopaminergic therapies, suggesting that these inappropriate rhythms might also emerge acutely from disrupted dopamine transmission. The neural basis of these abnormal beta oscillations is unclear, and how they might compromise information processing, or how they arise, is unknown. Using a 6-hydroxydopamine-lesioned rodent model of PD, we demonstrate that beta oscillations are inappropriately exaggerated, compared with controls, in a brain-state-dependent manner after chronic dopamine loss. Exaggerated beta oscillations are expressed at the levels of single neurons and small neuronal ensembles, and are focally present and spatially distributed within STN. They are also expressed in synchronous population activities, as evinced by oscillatory local field potentials, in STN and cortex. Excessively synchronized beta oscillations reduce the information coding capacity of STN neuronal ensembles, which may contribute to parkinsonian motor impairment. Acute disruption of dopamine transmission in control animals with antagonists of D1/D2 receptors did not exaggerate STN or cortical beta oscillations. Moreover, beta oscillations were not exaggerated until several days after 6-hydroxydopamine injections. Thus, contrary to predictions, abnormally amplified beta oscillations in cortico-STN circuits do not result simply from an acute absence of dopamine receptor stimulation, but are instead delayed sequelae of chronic dopamine depletion. Targeting the plastic processes underlying the delayed emergence of pathological beta oscillations after continuing dopaminergic dysfunction may offer considerable therapeutic promise.


The Journal of Neuroscience | 2008

Parkinsonian Beta Oscillations in the External Globus Pallidus and Their Relationship with Subthalamic Nucleus Activity

Nicolas Mallet; Alek Pogosyan; László F. Márton; J P Bolam; Peter Brown; Peter J. Magill

Inappropriately synchronized beta (β) oscillations (15–30 Hz) in the subthalamic nucleus (STN) accompany movement difficulties in idiopathic Parkinsons disease (PD). The cellular and network substrates underlying these exaggerated β oscillations are unknown but activity in the external globus pallidus (GP), which forms a candidate pacemaker network with STN, might be of particular importance. Using a clinically relevant rat model of PD, we demonstrate that oscillatory activity in GP neuronal networks becomes excessively and selectively synchronized at β frequencies in a spatially widespread and brain state-dependent manner after lesion of dopamine neurons. Although synchronization of GP unit activity increased by almost 100-fold during β oscillations, the mean firing rate of GP neurons decreased compared with controls. Importantly, in parkinsonian animals, two main types of GP neuron were identified according to their distinct and inversely related firing rates and patterns. Moreover, neurons of the same type tended to fire together, with small phase differences, whereas different types of neuron tended not to do so. This functional dichotomy in temporal coupling persisted across extreme brain states, suggesting that maladaptive interactions are dominated by hardwiring. Finally, the precisely timed discharges of GP and STN neurons indicated that rhythmic sequences of recurrent excitation and inhibition in the STN-GP network, and lateral inhibition between GP neurons, could actively support abnormal β oscillations. We propose that GP neurons, by virtue of their spatiotemporal synchronization, widespread axon collaterals and feed-back/feed-forward mechanisms, are well placed to orchestrate and propagate exaggerated β oscillations throughout the entire basal ganglia in PD.


The Journal of Neuroscience | 2010

Cortical and Thalamic Innervation of Direct and Indirect Pathway Medium-Sized Spiny Neurons in Mouse Striatum

Natalie M. Doig; Moss J; J P Bolam

The striatum receives major excitatory inputs from the cortex and thalamus that predominantly target the spines of medium-sized spiny neurons (MSNs). We aimed to determine whether there is any selectivity of these two excitatory afferents in their innervation of direct and indirect pathway MSNs. To address this, we used bacterial artificial chromosome transgenic mice, in which enhanced green fluorescent protein (EGFP) reports the presence of D1 or D2 dopamine receptor subtypes, markers of direct and indirect pathway MSNs, respectively. Excitatory afferents were identified by the selective expression of vesicular glutamate transporter type 1 (VGluT1) by corticostriatal afferents and vesicular glutamate transporter type 2 (VGluT2) by thalamostriatal afferents. A quantitative electron microscopic analysis was performed on striatal tissue from D1 and D2 mice that was double immunolabeled to reveal the EGFP and VGluT1 or VGluT2. We found that the proportion of synapses formed by terminals derived from the cortex and thalamus was similar for both direct and indirect pathway MSNs. Furthermore, qualitative analysis revealed that individual cortical or thalamic terminals form synapses with both direct and indirect pathway MSNs. Similarly, we observed a convergence of cortical and thalamic inputs onto individual MSNs of both direct and indirect pathway: individual EGFP-positive structures received input from both VGluT2-positive and VGluT2-negative terminals. These findings demonstrate that direct and indirect pathway MSNs are similarly innervated by cortical and thalamic afferents; both projections are thus likely to be critical in the control of MSNs and hence play fundamental roles in the expression of basal ganglia function.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model

S Janezic; Sarah Threlfell; Paul D. Dodson; M J Dowie; Tonya N. Taylor; D Potgieter; Laura Parkkinen; Sl.; S Anwar; Brent J. Ryan; T Deltheil; Polina Kosillo; Milena Cioroch; K Wagner; Olaf Ansorge; David M. Bannerman; J P Bolam; Peter J. Magill; Stephanie J. Cragg; Richard Wade-Martins

Significance Elevated expression of the presynaptic protein α-synuclein underlies familial and sporadic Parkinson disease (PD). However, our understanding of how increases in α-synuclein levels drive the sequence of events leading to PD is incomplete. Here, we apply a multidisciplinary longitudinal analysis to a new α-synuclein transgenic mouse model. We show that early-stage decreases in dopamine release and vesicle reclustering precede late-stage changes in neuronal firing properties, measured by in vivo recordings from vulnerable neurons. Accumulated deficits in dopamine neurotransmission and altered neuronal firing are associated with cell death and motor abnormalities, in the absence of protein aggregation in the substantia nigra. These findings have important implications for developing therapies. The pathological end-state of Parkinson disease is well described from postmortem tissue, but there remains a pressing need to define early functional changes to susceptible neurons and circuits. In particular, mechanisms underlying the vulnerability of the dopamine neurons of the substantia nigra pars compacta (SNc) and the importance of protein aggregation in driving the disease process remain to be determined. To better understand the sequence of events occurring in familial and sporadic Parkinson disease, we generated bacterial artificial chromosome transgenic mice (SNCA-OVX) that express wild-type α-synuclein from the complete human SNCA locus at disease-relevant levels and display a transgene expression profile that recapitulates that of endogenous α-synuclein. SNCA-OVX mice display age-dependent loss of nigrostriatal dopamine neurons and motor impairments characteristic of Parkinson disease. This phenotype is preceded by early deficits in dopamine release from terminals in the dorsal, but not ventral, striatum. Such neurotransmission deficits are not seen at either noradrenergic or serotoninergic terminals. Dopamine release deficits are associated with an altered distribution of vesicles in dopaminergic axons in the dorsal striatum. Aged SNCA-OVX mice exhibit reduced firing of SNc dopamine neurons in vivo measured by juxtacellular recording of neurochemically identified neurons. These progressive changes in vulnerable SNc neurons were observed independently of overt protein aggregation, suggesting neurophysiological changes precede, and are not driven by, aggregate formation. This longitudinal phenotyping strategy in SNCA-OVX mice thus provides insights into the region-specific neuronal disturbances preceding and accompanying Parkinson disease.


The Journal of Neuroscience | 2007

Novel and Distinct Operational Principles of Intralaminar Thalamic Neurons and Their Striatal Projections

Lacey Cj; J P Bolam; Peter J. Magill

Neurons of the intralaminar thalamus, including central lateral (CL) and parafascicular (Pf) nuclei, innervate the cortex and striatum and are important for cognitive, sensory, and motor processes. We tested the hypothesis that CL and Pf neurons provide functionally distinct inputs to the striatum. We performed recordings of single CL and Pf neurons in anesthetized rats and, after juxtacellularly labeling the neurons, their somatodendritic features and synaptic connections were characterized. All CL neurons (n = 31) discharged classic low-threshold Ca2+ spike bursts during cortical slow-wave activity in vivo. In contrast, Pf neurons (n = 52) rarely fired such bursts, but instead discharged groups of spikes at relatively low frequencies. The activity of CL and Pf neurons was often temporally coupled to cortical slow oscillations. Identified CL neurons possessed archetypal “bushy” dendrites and preferentially established synapses with dendritic spines (91% of synapses) of striatal projection neurons. Pf neurons possessed “reticular-like” dendrites, and, on average, preferentially established synapses with dendritic shafts (63%) in striatum, although connectivity was markedly heterogeneous across neurons. Two of the six Pf neurons studied exclusively targeted dendritic shafts, whereas another neuron almost exclusively (97%) targeted spines. The remaining three neurons preferentially targeted dendritic shafts (53–70%). Thus, the fundamental properties of CL and Pf neurons differ (the latter do not express the typical operational principles of thalamic relay neurons), and they provide different temporally patterned inputs to distinct striatal targets. This mechanistic diversity likely underpins the transmission of specific and discrete information from intralaminar thalamic nuclei to striatal and cortical targets.


The Journal of Neuroscience | 2011

Functional Alterations to the Nigrostriatal System in Mice Lacking All Three Members of the Synuclein Family

S Anwar; Owen M. Peters; Steven Millership; Natalia Ninkina; Natalie M. Doig; Natalie Connor-Robson; Sarah Threlfell; G Kooner; Robert M. J. Deacon; David M. Bannerman; J P Bolam; S S Chandra; Stephanie J. Cragg; Richard Wade-Martins; Vladimir L. Buchman

The synucleins (α, β, and γ) are highly homologous proteins thought to play a role in regulating neurotransmission and are found abundantly in presynaptic terminals. To overcome functional overlap between synuclein proteins and to understand their role in presynaptic signaling from mesostriatal dopaminergic neurons, we produced mice lacking all three members of the synuclein family. The effect on the mesostriatal system was assessed in adult (4- to 14-month-old) animals using a combination of behavioral, biochemical, histological, and electrochemical techniques. Adult triple-synuclein-null (TKO) mice displayed no overt phenotype and no change in the number of midbrain dopaminergic neurons. TKO mice were hyperactive in novel environments and exhibited elevated evoked release of dopamine in the striatum detected with fast-scan cyclic voltammetry. Elevated dopamine release was specific to the dorsal not ventral striatum and was accompanied by a decrease of dopamine tissue content. We confirmed a normal synaptic ultrastructure and a normal abundance of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes in the dorsal striatum. Treatment of TKO animals with drugs affecting dopamine metabolism revealed normal rate of synthesis, enhanced turnover, and reduced presynaptic striatal dopamine stores. Our data uniquely reveal the importance of the synuclein proteins in regulating neurotransmitter release from specific populations of midbrain dopamine neurons through mechanisms that differ from those reported in other neurons. The finding that the complete loss of synucleins leads to changes in dopamine handling by presynaptic terminals specifically in those regions preferentially vulnerable in Parkinsons disease may ultimately inform on the selectivity of the disease process.


The Journal of Neuroscience | 2007

A single-cell analysis of intrinsic connectivity in the rat globus pallidus.

Sadek Ar; Peter J. Magill; J P Bolam

GABAergic neurons of the globus pallidus (GP) play critical roles in basal ganglia function by virtue of their widespread axonal projections to all parts of the basal ganglia. They also possess local axon collaterals. In view of the importance of GABAergic inputs in sculpting neuronal activity, we quantitatively characterized the local axon collaterals of individual GP neurons by in vivo recording, juxtacellular labeling, reconstruction, and light and electron microscopic analysis in the rat. All labeled GP neurons had similar firing properties and gave rise to local axon collaterals, the main synaptic targets of which were perikarya and primary dendrites. The neurons could be divided into two populations; neurons located within ∼100 μm of the striatopallidal border (“outer” neurons), which possess a mean of 264 local axonal boutons, and those located ∼100 μm or more from the striatopallidal border (“inner” neurons), which possess a mean of 581 local axonal boutons. The local axon collaterals gave rise to arborizations close to, or within, the parent dendritic field and arborizations located caudal, medial, and ventral to the parent neuron. The qualitative and quantitative differences in the connectivity of neurons located in the outer and inner regions of the GP underlie a complex microcircuitry that follows an asymmetric rostral to caudal organization. These data suggest that the GP should no longer be considered as an homogeneous relay nucleus that simply transmits striatal information to the subthalamic nucleus and basal ganglia output nuclei, but rather as a structure that can perform complex computations within its borders.


Neuroscience | 2005

GABA(B) receptors at glutamatergic synapses in the rat striatum.

Lacey Cj; J. Boyes; O. Gerlach; Lei Chen; Peter J. Magill; J P Bolam

Although multiple effects of GABA(B) receptor activation on synaptic transmission in the striatum have been described, the precise locations of the receptors mediating these effects have not been determined. To address this issue, we carried out pre-embedding immunogold electron microscopy in the rat using antibodies against the GABA(B) receptor subunits, GABA(B1) and GABA(B2). In addition, to investigate the relationship between GABA(B) receptors and glutamatergic striatal afferents, we used antibodies against the vesicular glutamate transporters, vesicular glutamate transporter 1 and vesicular glutamate transporter 2, as markers for glutamatergic terminals. Immunolabeling for GABA(B1) and GABA(B2) was widely and similarly distributed in the striatum, with immunogold particles localized at both presynaptic and postsynaptic sites. The most commonly labeled structures were dendritic shafts and spines, as well as terminals forming asymmetric and symmetric synapses. In postsynaptic structures, the majority of labeling associated with the plasma membrane was localized at extrasynaptic sites, although immunogold particles were also found at the postsynaptic specialization of some symmetric, putative GABAergic synapses. Labeling in axon terminals was located within, or at the edge of, the presynaptic active zone, as well as at extrasynaptic sites. Double labeling for GABA(B) receptor subunits and vesicular glutamate transporters revealed that labeling for both GABA(B1) and GABA(B2) was localized on glutamatergic axon terminals that expressed either vesicular glutamate transporter 1 or vesicular glutamate transporter 2. The patterns of innervation of striatal neurons by the vesicular glutamate transporter 1- and vesicular glutamate transporter 2-positive terminals suggest that they are selective markers of corticostriatal and thalamostriatal afferents, respectively. These results thus provide evidence that presynaptic GABA(B) heteroreceptors are in a position to modulate the two major excitatory inputs to striatal spiny projection neurons arising in the cortex and thalamus. In addition, presynaptic GABA(B) autoreceptors are present on the terminals of spiny projection neurons and/or striatal GABAergic interneurons. Furthermore, the data indicate that GABA may also affect the excitability of striatal neurons via postsynaptic GABA(B) receptors.

Collaboration


Dive into the J P Bolam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Sharott

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Brown

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge