J. Wayne Leitner
Anschutz Medical Campus
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Wayne Leitner.
Journal of Biological Chemistry | 2005
Linda A. Barbour; Shaikh Mizanoor Rahman; Inga Gurevich; J. Wayne Leitner; Stephanie J. Fischer; Michael Roper; Trina A. Knotts; Yen Vo; Carrie E. McCurdy; Shoshana Yakar; Derek LeRoith; C. Ronald Kahn; Lewis C. Cantley; Jacob E. Friedman; Boris Draznin
Insulin resistance is a cardinal feature of normal pregnancy and excess growth hormone (GH) states, but its underlying mechanism remains enigmatic. We previously found a significant increase in the p85 regulatory subunit of phosphatidylinositol kinase (PI 3-kinase) and striking decrease in IRS-1-associated PI 3-kinase activity in the skeletal muscle of transgenic animals overexpressing human placental growth hormone. Herein, using transgenic mice bearing deletions in p85α, p85β, or insulin-like growth factor-1, we provide novel evidence suggesting that overexpression of p85α is a primary mechanism for skeletal muscle insulin resistance in response to GH. We found that the excess in total p85 was entirely accounted for by an increase in the free p85α-specific isoform. In mice with a liver-specific deletion in insulin-like growth factor-1, excess GH caused insulin resistance and an increase in skeletal muscle p85α, which was completely reversible using a GH-releasing hormone antagonist. To understand the role of p85α in GH-induced insulin resistance, we used mice bearing deletions of the genes coding for p85α or p85β, respectively (p85α +/– and p85β–/–). Wild type and p85β–/– mice developed in vivo insulin resistance and demonstrated overexpression of p85α and reduced insulin-stimulated PI 3-kinase activity in skeletal muscle in response to GH. In contrast, p85α+/–mice retained global insulin sensitivity and PI 3-kinase activity associated with reduced p85α expression. These findings demonstrated the importance of increased p85α in mediating skeletal muscle insulin resistance in response to GH and suggested a potential role for reducing p85α as a therapeutic strategy for enhancing insulin sensitivity in skeletal muscle.
American Journal of Physiology-heart and Circulatory Physiology | 2010
Jenny Lee; Ya Xu; Li Lu; Bryan C. Bergman; J. Wayne Leitner; Clifford Greyson; Boris Draznin; Gregory G. Schwartz
Heightened cardiovascular risk among patients with systemic insulin resistance is not fully explained by the extent of atherosclerosis. It is unknown whether myocardial insulin resistance accompanies systemic insulin resistance and contributes to increased cardiovascular risk. This study utilized a porcine model of diet-induced obesity to determine if myocardial insulin resistance develops in parallel with systemic insulin resistance and investigated potential mechanisms for such changes. Micropigs (n = 16) were assigned to control (low fat, no added sugars) or intervention (25% wt/wt coconut oil and 20% high-fructose corn syrup) diet for 7 mo. Intervention diet resulted in obesity, hypertension, and dyslipidemia. Systemic insulin resistance was manifest by elevated fasting glucose and insulin, abnormal response to intravenous glucose tolerance testing, and blunted skeletal muscle phosphatidylinositol-3-kinase (PI 3-kinase) activation and protein kinase B (Akt) phosphorylation in response to insulin. In myocardium, insulin-stimulated glucose uptake, PI 3-kinase activation, and Akt phosphorylation were also blunted in the intervention diet group. These findings were explained by increased myocardial content of p85alpha (regulatory subunit of PI 3-kinase), diminished association of PI 3-kinase with insulin receptor substrate (IRS)-1 in response to insulin, and increased serine-307 phosphorylation of IRS-1. Thus, in a porcine model of diet-induced obesity that recapitulates many characteristics of insulin-resistant patients, myocardial insulin resistance develops along with systemic insulin resistance and is associated with multiple abnormalities of insulin signaling.
Nutrition & Metabolism | 2009
Rebecca Adochio; J. Wayne Leitner; Karen Gray; Boris Draznin; Marc-Andre Cornier
BackgroundEarly molecular changes of nutritionally-induced insulin resistance are still enigmatic. It is also unclear if acute overnutrition alone can alter insulin signaling in humans or if the macronutrient composition of the diet can modulate such effects.MethodsTo investigate the molecular correlates of metabolic adaptation to either high-carbohydrate (HC) or high-fat (HF) overfeeding, we conducted overfeeding studies in 21 healthy lean (BMI < 25) individuals (10 women, 11 men), age 20-45, with normal glucose metabolism and no family history of diabetes. Subjects were studied first following a 5-day eucaloric (EC) diet (30% fat, 50% CHO, 20% protein) and then in a counter balanced manner after 5 days of 40% overfeeding of both a HC (20% fat, 60% CHO) diet and a HF (50% fat, 30% CHO) diet. At the end of each diet phase, in vivo insulin sensitivity was assessed using the hyperinsulinemic-euglycemic clamp technique. Ex vivo insulin action was measured from skeletal muscle tissue samples obtained 15 minutes after insulin infusion was initiated.ResultsOverall there was no change in whole-body insulin sensitivity as measured by glucose disposal rate (GDR, EC: 12.1 ± 4.7; HC: 10.9 ± 2.7; HF: 10.8 ± 3.4). Assessment of skeletal muscle insulin signaling demonstrated increased tyrosine phosphorylation of IRS-1 (p < 0.001) and increased IRS-1-associated phosphatidylinositol 3 (PI 3)-kinase activity (p < 0.001) following HC overfeeding. In contrast, HF overfeeding increased skeletal muscle serine phosophorylation of IRS-1 (p < 0.001) and increased total expression of p85α (P < 0.001).ConclusionWe conclude that acute bouts of overnutrition lead to changes at the cellular level before whole-body insulin sensitivity is altered. On a signaling level, HC overfeeding resulted in changes compatible with increased insulin sensitivity. In contrast, molecular changes in HF overfeeding were compatible with a reduced insulin sensitivity.
Journal of Biological Chemistry | 2000
James Chappell; Inga Golovchenko; Kei Wall; Richard Stjernholm; J. Wayne Leitner; Marc L. Goalstone; Boris Draznin
We have shown previously that insulin promotes phosphorylation and activation of farnesyltransferase and geranylgeranyltransferase (GGTase) II. We have now examined the effect of insulin on geranylgeranyltransferase I in MCF-7 breast cancer cells. Insulin increased GGTase I activity 3-fold and augmented the amounts of geranylgeranylated Rho-A by 18%. Both effects of the insulin were blocked by an inhibitor of GGTase I, GGTI-286. The insulin-induced increases in the amounts of geranylgeranylated Rho-A resulted in potentiation of the Rho-A-mediated effects of lysophosphatidic acid (LPA) on a serum response element-luciferase construct. Preincubation of cells with insulin augmented the LPA-stimulated serum response element-luciferase activation to 12-fold, compared with just 6-fold for LPA alone (p < 0.05). The potentiating effect of insulin was dose-dependent, inhibited by GGTI-286 and not mimicked by insulin-like growth factor-1. We conclude that insulin activates GGTase I, increases the amounts of geranylgeranylated Rho-A protein, and potentiates the Rho-A-dependent nuclear effects of LPA in MCF-7 breast cancer cells.
Journal of Biological Chemistry | 1999
Marc L. Goalstone; J. Wayne Leitner; Inga Golovchenko; M. Richard Stjernholm; Mireille Cormont; Yannick Le Marchand-Brustel; Boris Draznin
Rab proteins play a crucial role in the trafficking of intracellular vesicles. Rab proteins are GTPases that cycle between an inactive GDP-bound form and an active GTP-bound conformation. A prerequisite to Rab activation by GTP loading is its post-translational modification by the addition of geranylgeranyl moieties to highly conserved C-terminal cysteine residues. We examined the effect of insulin on the activity of geranylgeranyltransferase II (GGTase II) in 3T3-L1 fibroblasts and adipocytes. In fibroblasts, insulin increased the enzymatic activity of GGTase II 2.5-fold after 1 h of incubation, an effect that is blocked by perillyl alcohol, an inhibitor of prenyltransferases, but not by the geranylgeranyltransferase I inhibitor, GGTI-298, or the farnesyltransferase inhibitor, α-hydroxyfarnesylphosphonic acid. Concomitantly, insulin stimulated the phosphorylation of the GGTase II α-subunit without any effect on the GGTase II β-subunit. At the same time, insulin also increased the amounts of geranylgeranylated Rab-3 in 3T3-L1 fibroblasts from 44 ± 1.2% in control cells to 63 ± 3.8 and 64 ± 6.1% after 1 and 24 h of incubation, respectively. In adipocytes, insulin increased the amounts of geranylgeranylated Rab-4 from 38 ± 0.6% in control cells to 56 ± 1.7 and 60 ± 2.6% after 1 and 24 h of incubation, respectively. In both fibroblasts and adipocytes, the presence of perillyl alcohol blocked the ability of insulin to increase geranylgeranylation of Rab-4, whereas GGTI-298 and α-hydroxyfarnesylphosphonic acid were without effect, indicating that insulin activates GGTase II. In summary, insulin promotes phosphorylation and activation of GGTase II in both 3T3 L1 fibroblasts and adipocytes and increases the amounts of geranylgeranylated Rab-3 and Rab-4 proteins.
Metabolism-clinical and Experimental | 2003
Christina Finlayson; James Chappell; J. Wayne Leitner; Marc L. Goalstone; Maureen J. Garrity; Samia Nawaz; Theodore P. Ciaraldi; Boris Draznin
Insulin is a mild mitogen and has been shown to potentiate mitogenic influence of other growth factors. Because hyperinsulinemia and/or overexpression of insulin receptors have been linked to development, progression, and outcome of breast cancer, we attempted to evaluate the mechanism of these associations. We have compared the expression of insulin receptors and the magnitude of insulin signaling in breast tumors and adjacent normal mammary tissue samples obtained from 20 patients. We observed that insulin binding more than doubled in the tumors as compared with the normal tissue (P <.01 by paired t test). Insulin signaling to Shc, judged by the magnitude of its phosphorylation, was also significantly enhanced in the tumors. In contrast, the phosphorylation of the insulin-receptor substrate-1 (IRS-1), Akt, and mitogen-activated protein (MAP) kinase were identical in the tumorous and normal mammary tissues. Finally, tumors displayed significantly increased amounts of farnesylated p21 Ras and geranylgeranylated Rho-A (P <.01), consistent with Shc-dependent activation of farnesyl (FTase) and geranylgeranyl transferases (GGTase) in the tumor tissue. We conclude that the mechanism of the mitogenic influence of insulin in breast cancer may include increased expression of insulin receptors, preferential hyperphosphorylation of Shc, and increased amounts of prenylated p21 Ras and Rho-A in tumor tissue as compared with adjacent normal mammary tissue.
Life Sciences | 2008
Rocio I. Pereira; J. Wayne Leitner; Christopher Erickson; Boris Draznin
AIMS Thiazolidinediones increase circulating adiponectin. We have previously demonstrated the involvement of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in insulin-stimulated adiponectin secretion. We therefore investigated the effects of the thiazolidinedione pioglitazone on acute adiponectin secretion, and the involvement of the PI3K signaling pathway in this action. MAIN METHODS We treated murine 3T3-L1 and human primary adipocytes with 1-10 uM pioglitazone for 2 h, +/-PI3K inhibition by Wortmannin (WT). Secreted adiponectin was measured by Western blot. PI3K activity following 15-minute treatments with 1-10 uM pioglitazone was measured by thin layer chromatography. Pioglitazones effect on adiponectin synthesis and on secretion of newly synthesized adiponectin was studied in 3T3-L1 adipocytes using a pulse-chase technique. KEY FINDINGS Pioglitazone was found to increase adiponectin secretion and PI3K activity in a dose-dependent manner from 3T3-L1 and human adipocytes. In 3T3-L1 adipocytes, 10 uM pioglitazone increased adiponectin secretion by 84+/-14% (p<0.0001) at 2 h. Similarly, in human adipocytes there was a 56+/-18% (p<0.02) increase in secretion. WT blocked the pioglitazone effect and decreased adiponectin secretion at 2 h (47% of pioglitazone treated, p<0.006). Pioglitazone increased PI3K activity in a dose-dependent manner in both 3T3-L1 (1.7 vs. 2.7-fold increase over control at 2 uM vs. 10 uM dose, p=0.02) and human adipocytes. SIGNIFICANCE Our data show that pioglitazone acutely stimulates adiponectin secretion from both 3T3-L1 and human adipocytes. This acute effect of pioglitazone is PI3K-dependent.
Endocrinology | 2009
Rebecca Adochio; J. Wayne Leitner; Reed Hedlund; Boris Draznin
Phosphorylation of insulin receptor substrate-1 (IRS-1) on serine residues has been recognized as a mechanism responsible for a diminution of insulin action and insulin resistance. Potential approaches to improve insulin sensitivity may include interference with and/or reduction in expression of certain signaling intermediates that participate in the pathogenesis of insulin resistance. In this study, we transduced fully differentiated 3T3-L1 adipocytes with a constitutively active myristoylated Akt that led to hyperactivation of mammalian target of rapamycin and p70 S6 kinase (S6K1), increased serine phosphorylation of IRS-1, and reduction in insulin-stimulated phosphatidylinositol (PI) 3-kinase activity and glucose transport. We then reduced expression of the PI 3-kinase regulatory subunit, p85alpha, or expression of S6K1 kinase using small interfering RNA transfections, which led to a reduction in p85alpha expression of 70% at 48 h (P < 0.05) and S6K1 of 49% (P < 0.05). Reduction in expression of either p85alpha or S6K1 achieved with small interfering RNA in the presence of myristoylated Akt rescued 3T3-L1 adipocytes from the insulin resistance induced by serine phosphorylation of IRS-1 and completely restored insulin-stimulated activation of PI 3-kinase and glucose uptake. We conclude that reduction in expression of p85alpha or S6K1 could represent therapeutic targets to mitigate insulin resistance.
Metabolism-clinical and Experimental | 2013
Cecilia C. Low Wang; Rebecca L. Adochio; J. Wayne Leitner; Ian M. Abeyta; Boris Draznin; Marc-Andre Cornier
OBJECTIVE The cellular effects of restricting fat versus carbohydrate during a low-calorie diet are unclear. The aim of this study was to examine acute effects of energy and macronutrient restriction on skeletal muscle insulin signalling in obesity. MATERIALS/METHODS Eighteen obese individuals without diabetes underwent euglycemic-hyperinsulinemic clamp and skeletal muscle biopsy after: (a) 5days of eucaloric diet (30% fat, 50% carbohydrate), and (b) 5days of a 30% calorie-restricted diet, either low fat/high carbohydrate (LF/HC: 20% fat, 60% carbohydrate) or high-fat/low carbohydrate (HF/LC: 50% fat, 30% carbohydrate). RESULTS Weight, body composition, and insulin sensitivity were similar between groups after eucaloric diet. Weight loss was similar between groups after hypocaloric diet, 1.3±1.3kg (p<0.0001 compared with eucaloric). Whole-body insulin sensitivity was unchanged after calorie restriction and similar between groups. However, ex vivo skeletal muscle insulin signalling differed depending on macronutrient composition of calorie-restricted diet. Skeletal muscle of the LF/HC group had increased insulin-stimulated tyrosine phosphorylation of IRS-1, decreased insulin-stimulated Ser307 phosphorylation of IRS-1, and increased IRS-1-associated phosphatidylinositol (PI)3-kinase activity. Conversely, insulin stimulation of tyrosine phosphorylated IRS-1 was absent and serine 307 phosphorylation of IRS-1 was increased on HF/LC, with blunting of IRS-1-associated PI3-kinase activity. CONCLUSION Acute caloric restriction with an LF/HC diet alters skeletal muscle insulin signalling in a way that improves insulin sensitivity, while acute caloric restriction with an HF/LC diet induces changes compatible with insulin resistance. In both cases, ex vivo changes in skeletal muscle insulin signalling appear prior to changes in whole body insulin sensitivity.
Diabetes | 1982
Boris Draznin; J. Wayne Leitner; Karl E. Sussman
Eighty-seven percent of the total cellular pool of somatostatin (SRIF) receptors in pancreatic islets are located intracellularly. Upon glucose stimulation (300 mg/dl) of insulin release, 8–15% of intracellular SRIF receptors are translocated to the plasma membrane. Affinity of SRIF receptors does not change during their migration and the total cellular pool of receptors remains constant. With prolonged glucose stimulation, surface membrane somatostatin receptor concentration reaches a maximum level at 60 min.