Jackie Zeqi Sheng
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jackie Zeqi Sheng.
Jaro-journal of The Association for Research in Otolaryngology | 2000
Masao Yagi; Sho Kanzaki; Kohei Kawamoto; Brian Shin; Pratik P. Shah; Ella Magal; Jackie Zeqi Sheng; Yehoash Raphael
Perceptual benefits from the cochlear prosthesis are related to the quantity and quality of the patients auditory nerve population. Multiple neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), have been shown to have important roles in the survival of inner ear auditory neurons, including protection of deafferented spiral ganglion cells (SGCs). In this study, GDNF gene therapy was tested for its ability to enhance survival of SGCs after aminoglycoside/diuretic-induced insult that eliminated the inner hair cells. The GDNF transgene was delivered by adenoviral vectors. Similar vectors with a reporter gene (lacZ) insert served as controls. Four or seven days after bilateral deafening, 5 microl of an adenoviral suspension (Ad-GDNF or Ad-lacZ) or an artificial perilymph was injected into the left scala tympani of guinea pigs. Animals were sacrificed 28 days after deafening and their inner ears prepared for SGC counts. Adenoviral-mediated GDNF transgene expression enhanced SGC survival in the left (viral-treated) deafened ears. This observation suggests that GDNF is one of the survival factors in the inner ear and may help maintain the auditory neurons after insult. Application of GDNF and other survival factors via gene therapy has great potential for inducing survival of auditory neurons following hair cell loss.
Science Translational Medicine | 2012
Ian Foltz; Sylvia Hu; Chadwick Terence King; Xinle Wu; Chaofeng Yang; Wei Wang; Jennifer Weiszmann; Jennitte Stevens; Jiyun Sunny Chen; Noi Nuanmanee; Jamila Gupte; Renee Komorowski; Laura Sekirov; Todd Hager; Taruna Arora; Hongfei Ge; Helene Baribault; Fen Wang; Jackie Zeqi Sheng; Margaret Karow; Minghan Wang; Yongde Luo; Wallace L. McKeehan; Zhulun Wang; Murielle M. Véniant; Yang Li
A monoclonal antibody mimic of FGF21 exerts beneficial metabolic effects in obese monkeys. A Metabolic Mimic Losing weight typically requires exercise and a healthy diet. Managing diabetes similarly relies on diet and exercise but also includes insulin therapy. Now, both diabetes and obesity could be treated together by targeting the fibroblast growth factor 21 (FGF21) pathway. Foltz and colleagues show that an antibody mimic of FGF21 works to regulate glucose and insulin homeostasis, leading to weight loss and glucose tolerance in monkeys. The authors first engineered the FGF21-mimetic monoclonal antibody, which they termed “mimAb1.” This antibody was able to activate human and monkey FGF receptor 1c (FGFR1c)/βKlotho signaling similar to its native counterpart, FGF21. In vivo in obese cynomolgus monkeys, mimAb1 treatment led to a decrease in body weight and body mass index (BMI)—a decrease that was maintained for 9 weeks after the second round of treatment. These beneficial effects on metabolism were seen only initially with FGF21, before animals regained weight. Animals treated with mimAb1 also showed a decrease in fasting and fed plasma insulin levels, suggesting an improvement in insulin sensitivity, as well as a reduction in plasma triglyceride and glucose levels. Native FGF21 is difficult to develop as a therapeutic for diabetes and obesity; efforts to date have fallen short. mimAb1 recreates all of the beneficial metabolic effects of FGF21 as measured but is easier to manufacture, has prolonged pharmacokinetics, and has been engineered with high specificity. This mimAb1 will need additional safety and toxicity testing for translation, but early efficacy data in nonhuman primates suggest that this antibody is on its way to helping treat patients with diet-induced obesity and diabetes. Fibroblast growth factor 21 (FGF21) is a distinctive member of the FGF family with potent beneficial effects on lipid, body weight, and glucose metabolism and has attracted considerable interest as a potential therapeutic for treating diabetes and obesity. As an alternative to native FGF21, we have developed a monoclonal antibody, mimAb1, that binds to βKlotho with high affinity and specifically activates signaling from the βKlotho/FGFR1c (FGF receptor 1c) receptor complex. In obese cynomolgus monkeys, injection of mimAb1 led to FGF21-like metabolic effects, including decreases in body weight, plasma insulin, triglycerides, and glucose during tolerance testing. Mice with adipose-selective FGFR1 knockout were refractory to FGF21-induced improvements in glucose metabolism and body weight. These results in obese monkeys (with mimAb1) and in FGFR1 knockout mice (with FGF21) demonstrated the essential role of FGFR1c in FGF21 function and suggest fat as a critical target tissue for the cytokine and antibody. Because mimAb1 depends on βKlotho to activate FGFR1c, it is not expected to induce side effects caused by activating FGFR1c alone. The unexpected finding of an antibody that can activate FGF21-like signaling through cell surface receptors provided preclinical validation for an innovative therapeutic approach to diabetes and obesity.
Brain Research | 1997
Paul A. Lapchak; Dalia M. Araujo; Dana Hilt; Jackie Zeqi Sheng; Shoushu Jiao
A recombinant adenoviral vector encoding the human glial cell line-derived neurotrophic factor (GDNF) gene (Ad-GDNF) was used to express the neurotrophic factor GDNF in the unilaterally 6-hydroxydopamine (6-OHDA) denervated substantia nigra (SN) of adult rats ten weeks following the 6-OHDA injection. 6-OHDA lesions significantly increased apomorphine-induced (contralateral) rotations and reduced striatal and nigral dopamine (DA) levels by 99% and 70%, respectively. Ad-GDNF significantly (P < 0.01) decreased (by 30-40%) apomorphine-induced rotations in lesioned rats for up to two weeks following a single injection. Locomotor activity, assessed 7 days following the Ad-GDNF injection, was also significantly (P < 0.05) increased (by 300-400%). Two weeks after the Ad-GDNF injection, locomotor activity was still significantly increased compared to the Ad-beta-gal-injected 6-OHDA lesioned (control) group. Additionally, in Ad-GDNF-injected rats, there was a significant decrease (10-13%) in weight gain which persisted for approximately two weeks following the injection. Consistent with the behavioral changes, levels of DA and the metabolite dihydroxyphenylacetic acid (DOPAC) were elevated (by 98% and 65%, respectively) in the SN, but not the striatum of Ad-GDNF-injected rats. Overall, a single Ad-GDNF injection had significant effects for 2-3 weeks following administration. These results suggest that virally delivered GDNF promotes the recovery of nigral dopaminergic tone (i.e.: increased DA and DOPAC levels) and improves behavioral performance (i.e.: decreased rotations, increased locomotion) in rodents with extensive nigrostriatal dopaminergic denervation. Moreover, our results suggest that viral delivery of trophic factors may be used eventually to treat neurodegenerative diseases such as Parkinsons disease.
Journal of Bone and Mineral Research | 2011
Xiaodong Li; Mario Grisanti; Wei Fan; Frank Asuncion; Hong-Lin Tan; Denise Dwyer; Chun-Ya Han; Longchuan Yu; Jae Lee; Edward Lee; Mauricio Barrero; Pam Kurimoto; Qing-Tian Niu; Zhaopo Geng; Aaron George Winters; Tom Horan; Shirley Steavenson; Frederick W. Jacobsen; Qing Chen; Raj Haldankar; Jennifer Lavallee; Barbara Tipton; Mark Daris; Jackie Zeqi Sheng; Hsieng S. Lu; Kristi Daris; Rohini Deshpande; Eliane G. Valente; Hossein Salimi-Moosavi; Paul J. Kostenuik
The physiological role of Dickkopf‐1 (Dkk1) during postnatal bone growth in rodents and in adult rodents was examined utilizing an antibody to Dkk1 (Dkk1‐Ab) that blocked Dkk1 binding to both low density lipoprotein receptor‐related protein 6 (LRP6) and Kremen2, thereby preventing the Wnt inhibitory activity of Dkk1. Treatment of growing mice and rats with Dkk1‐Ab resulted in a significant increase in bone mineral density because of increased bone formation. In contrast, treatment of adult ovariectomized rats did not appreciably impact bone, an effect that was associated with decreased Dkk1 expression in the serum and bone of older rats. Finally, we showed that Dkk1 plays a prominent role in adult bone by mediating fracture healing in adult rodents. These data suggest that, whereas Dkk1 significantly regulates bone formation in younger animals, its role in older animals is limited to pathologies that lead to the induction of Dkk1 expression in bone and/or serum, such as traumatic injury.
PLOS ONE | 2012
Hongfei Ge; Helene Baribault; Steven Vonderfecht; Bryan Lemon; Jennifer Weiszmann; Jonitha Gardner; Ki Jeong Lee; Jamila Gupte; Paramita Mookherjee; Minghan Wang; Jackie Zeqi Sheng; Xinle Wu; Yang Li
Diabetes and associated metabolic conditions have reached pandemic proportions worldwide, and there is a clear unmet medical need for new therapies that are both effective and safe. FGF19 and FGF21 are distinctive members of the FGF family that function as endocrine hormones. Both have potent effects on normalizing glucose, lipid, and energy homeostasis, and therefore, represent attractive potential next generation therapies for combating the growing epidemics of type 2 diabetes and obesity. The mechanism responsible for these impressive metabolic effects remains unknown. While both FGF19 and FGF21 can activate FGFRs 1c, 2c, and 3c in the presence of co-receptor βKlotho in vitro, which receptor is responsible for the metabolic activities observed in vivo remains unknown. Here we have generated a variant of FGF19, FGF19-7, that has altered receptor specificity with a strong bias toward FGFR1c. We show that FGF19-7 is equally efficacious as wild type FGF19 in regulating glucose, lipid, and energy metabolism in both diet-induced obesity and leptin-deficient mouse models. These results are the first direct demonstration of the central role of the βKlotho/FGFR1c receptor complex in glucose and lipid regulation, and also strongly suggest that activation of this receptor complex alone might be sufficient to achieve all the metabolic functions of endocrine FGF molecules.
Journal of Molecular Biology | 2010
Hongfei Ge; Yumei Xiong; Bryan Lemon; Ki Jeong Lee; Jay Tang; Ping Wang; Jennifer Weiszmann; Nessa Hawkins; John Laudemann; Xiaoshan Min; David Penny; Thomas Gerard Wolfe; Qiang Liu; Richard Zhang; Weh-Chen Yeh; Wenyan Shen; Richard Lindberg; Zhulun Wang; Jackie Zeqi Sheng; Yang Li
Adiponectin is an adipocyte-derived hormone that has been shown to play important roles in the regulation of glucose and energy homeostasis. It exists as homotrimers or complexes containing multiple homotrimer units in plasma. The recombinant adiponectin proteins have been difficult to produce, making it challenging for both research as well as potential therapeutic development. Here, we show a novel approach for the generation of globular adiponectin that involves linking three monomer sequences together in tandem to generate one continuous polypeptide, which we have termed single-chain globular adiponectin (sc-gAd). To improve the pharmacokinetic properties of sc-gAd further, we fused it to an Fc fragment. The combined effects of single-chain and Fc fusion improved the plasma half-life from less than 2 h to close to 2 weeks. Using adeno-associated virus as a delivery method, we demonstrate that Fc-sc-gAd improved both fasting glucose levels and the tolerance to a glucose challenge in ob/ob mice without changes in body weight. Therefore, our results demonstrated the feasibility of generating globular adiponectin trimers from a single polypeptide and a long-acting globular adiponectin that could serve as a starting point for adiponectin-based therapeutics. This novel approach could also be applied to other complement factor C1q family members; in particular, this opens the possibility to study the biological functions of precisely defined heterotrimers of various family members that had not been previously possible.
Journal of Molecular Biology | 2012
Xinle Wu; Jennifer Weiszmann; Hongfei Ge; Helene Baribault; Jennitte Stevens; Nessa Hawkins; Steven Vonderfecht; Jonitha Gardner; Jamila Gupte; Jackie Zeqi Sheng; Minghan Wang; Yang Li
Three fibroblast growth factor (FGF) molecules, FGF19, FGF21, and FGF23, form a unique subfamily that functions as endocrine hormones. FGF19 and FGF21 can regulate glucose, lipid, and energy metabolism, while FGF23 regulates phosphate homeostasis. The FGF receptors and co-receptors for these three FGF molecules have been identified, and domains important for receptor interaction and specificity determination are beginning to be elucidated. However, a number of questions remain unanswered, such as the identification of fibroblast growth factor receptor responsible for glucose regulation. Here, we have generated a variant of FGF23: FGF23-21c, where the C-terminal domain of FGF23 was replaced with the corresponding regions from FGF21. FGF23-21c showed a number of interesting and unexpected properties in vitro. In contrast to wild-type FGF23, FGF23-21c gained the ability to activate FGFR1c and FGFR2c in the presence of βKlotho and was able to stimulate glucose uptake into adipocytes in vitro and lower glucose levels in ob/ob diabetic mice model to similar extent as FGF21 in vivo. These results suggest that βKlotho/FGFR1c or FGFR2c receptor complexes are sufficient for glucose regulation. Interestingly, without the FGF23 C-terminal domain, FGF23-21c was still able to activate fibroblast growth factor receptors in the presence of αKlotho. This suggests not only that sequences outside of the C-terminal region may also contribute to the interaction with co-receptors but also that FGF23-21c may be able to regulate both glucose and phosphate metabolisms. This raises an interesting concept of designing an FGF molecule that may be able to address multiple diseases simultaneously. Further understanding of FGF/receptor interactions may allow the development of exciting opportunities for novel therapeutic discovery.
Biotechnology Progress | 2015
Bram Estes; Yueh-Rong Hsu; Lei-Ting Tam; Jackie Zeqi Sheng; Jennitte Stevens; Raj Haldankar
Mammalian expression systems are used routinely for the production of recombinant proteins as therapeutic molecules as well as research tools. Transient expression has become increasingly popular in recent years due to its rapid timeline and improvements in expression level. While improvements to transient expression systems have focused mainly on the level of protein expression, the aspect of protein quality has received little attention. The removal of undesirable products, such as aggregation, depends primarily on purification, requiring additional cumbersome steps, which can lead to a lower product yield and longer timelines. In this study, we show that reducing the level of transcription by transfecting at a lower gene dose improves the quality of secreted molecules prone to aggregation. For gene dosing to have this effect, it is critical for the carrier DNA to be an empty vector containing the same elements as the gene containing plasmid. This approach can be used in combination with a temperature shift to hypothermic conditions during production to enhance the effect. The observed improvements not only minimized aggregation levels, but also generated products with overall superior quality, including more homogeneous signal peptide cleavage and N‐linked glycosylation profiles. These techniques have produced a similar improvement in product quality with a variety of other molecules, suggesting that this may be a general approach to enhance product quality from transient expression systems.
Arthritis Research & Therapy | 2001
Brad Bolon; C Carter; Mark Daris; Sean Morony; Giuseppe Campagnuolo; Ulrich Feige; Jackie Zeqi Sheng
The soluble decoy receptor osteoprotegerin (OPG) regulates bone resorption by inhibiting osteoclast formation, function and survival. We investigated OPG gene therapy as a means of ameliorating chronic osteoarticular disease using a mouse ovariectomy (OVX) model of estrogen deficiency-induced osteoporosis (Mol Ther 2001, 3:1–9). Young adult female mice injected once with an adenoviral (Ad) vector carrying a human fusion protein combining the OPG ligand-binding and immunoglobulin constant domains (hOPG-Fc) developed serum OPG levels that exceeded the threshold needed for efficacy (as assessed by a marked increase in bone density) for over 12 months. The extent of OPG production and skeletal enhancement was titer-dependent. Mice subjected to OVX or sham surgery and then treated with Ad-hOPG-Fc had significantly more bone volume and fewer osteoclasts in axial and appendicular bones after 4 weeks. In contrast, animals given OVX and either a control vector expressing β-galactosidase or vehicle had significantly less bone than did comparably treated, sham-operated mice. This study confirms that a single Ad gene transfer can produce persistent high-level OPG expression and shows that OPG gene therapy may prove useful in treating osteoporosis. We anticipate that OPG gene therapy will offer similar promise as a bone-sparing agent in chronic arthritis since we have shown previously that injected OPG significantly inhibits skeletal erosion in the Lewis rat model of mycobacterial-induced adjuvant arthritis (Nature 1999, 402:304–309).
Molecular Therapy | 2001
Brad Bolon; Christopher Carter; Mark Daris; Sean Morony; Casey Capparelli; Angela Hsieh; Mingfu Mao; Paul J. Kostenuik; Colin R. Dunstan; David L. Lacey; Jackie Zeqi Sheng