Jaclyn Sceneay
QIMR Berghofer Medical Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaclyn Sceneay.
Cancer and Metastasis Reviews | 2013
Jaclyn Sceneay; Mark J. Smyth; Andreas Möller
It is rapidly becoming evident that the formation of tumor-promoting pre-metastatic niches in secondary organs adds a previously unrecognized degree of complexity to the challenge of curing metastatic disease. Primary tumor cells orchestrate pre-metastatic niche formation through secretion of a variety of cytokines and growth factors that promote mobilization and recruitment of bone marrow-derived cells to future metastatic sites. Hypoxia within the primary tumor, and secretion of specific microvesicles termed exosomes, are emerging as important processes and vehicles for tumor-derived factors to modulate pre-metastatic sites. It has also come to light that reduced immune surveillance is a novel mechanism through which primary tumors create favorable niches in secondary organs. This review provides an overview of our current understanding of underlying mechanisms of pre-metastatic niche formation and highlights the common links as well as discrepancies between independent studies. Furthermore, the possible clinical implications, links to metastatic persistence and dormancy, and novel approaches for treatment of metastatic disease through reversal of pre-metastatic niche formation are identified and explored.
Cancer Research | 2012
Jaclyn Sceneay; Melvyn T. Chow; Anna Chen; Heloise Halse; Christina S.F. Wong; Daniel M. Andrews; Erica K. Sloan; Belinda S. Parker; David Bowtell; Mark J. Smyth; Andreas Möller
Hypoxia within a tumor acts as a strong selective pressure that promotes angiogenesis, invasion, and metastatic spread. In this study, we used immune competent bone marrow chimeric mice and syngeneic orthotopic mammary cancer models to show that hypoxia in the primary tumor promotes premetastatic niche formation in secondary organs. Injection of mice with cell-free conditioned medium derived from hypoxic mammary tumor cells resulted in increased bone marrow-derived cell infiltration into the lung in the absence of a primary tumor and led to increased metastatic burden in mammary and melanoma experimental metastasis models. By characterizing the composition of infiltrating bone marrow-derived cells, we identified CD11b+/Ly6Cmed/Ly6G+ myeloid and CD3-/NK1.1+ immune cell lineages as key constituents of the premetastatic niche. Furthermore, the cytotoxicity of natural killer (NK) cells was significantly decreased, resulting in a reduced antitumor response that allowed metastasis formation in secondary organs to a similar extent as ablation of NK cells. In contrast, metastatic burden was decreased when active NK cells were present in premetastatic lungs. Together, our findings suggest that primary tumor hypoxia provides cytokines and growth factors capable of creating a premetastatic niche through recruitment of CD11b+/Ly6Cmed/Ly6G+ myeloid cells and a reduction in the cytotoxic effector functions of NK cell populations.
Cancer Research | 2012
Melvyn T. Chow; Jaclyn Sceneay; Christophe Paget; Christina S.F. Wong; Helene Duret; Jürg Tschopp; Andreas Möller; Mark J. Smyth
The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function.
Cancer Research | 2012
Christina S.F. Wong; Jaclyn Sceneay; Colin M. House; Heloise Halse; Mira C.P. Liu; Joshy George; Titaina C.U. Potdevin Hunnam; Belinda S. Parker; Izhak Haviv; Ze'ev Ronai; Carleen Cullinane; David Bowtell; Andreas Möller
Tumor hypoxia is associated with resistance to antiangiogenic therapy and poor prognosis. The Siah E3 ubiquitin ligases regulate the hypoxic response pathway by modulating the turnover of the master proangiogenic transcription factor hypoxia-inducible factor-1α (Hif-1α). In this study, we show that genetic deficiency in the Siah family member Siah2 results in vascular normalization and delayed tumor growth in an established transgenic model of aggressive breast cancer. Tumors arising in a Siah2(-/-) genetic background showed increased perfusion and pericyte-associated vasculature, similar to that occurring with antiangiogenic therapy. In support of the role of Siah2 in regulating levels of Hif-1α, expression of angiogenic factors was decreased in Siah2(-/-) tumors. Blood vessel normalization in Siah2(-/-) tumors resulted in an increased response to chemotherapy and prolonged survival. Together, our findings offer a preclinical proof of concept that targeting Siah2 is sufficient to attenuate Hif-1α-mediated angiogenesis and hypoxia signaling, thereby improving responses to chemotherapy.
Cancer Research | 2016
Shu Wen Wen; Jaclyn Sceneay; Luize G. Lima; Christina S.F. Wong; Melanie Becker; Sophie Krumeich; Richard J. Lobb; Vanessa Castillo; Ke Ni Wong; Sarah Ellis; Belinda S. Parker; Andreas Möller
Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45+ bone marrow-derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. ©2016 AACR.
Cancer Research | 2015
Shawn C. Chafe; Yuanmei Lou; Jaclyn Sceneay; Marylou Vallejo; Melisa J. Hamilton; Paul C. McDonald; Kevin L. Bennewith; Andreas Möller; Shoukat Dedhar
The mobilization of bone marrow-derived cells (BMDC) to distant tissues before the arrival of disseminated tumor cells has been shown preclinically to facilitate metastasis through the establishment of metastatic niches. Primary tumor hypoxia has been demonstrated to play a pivotal role in the production of chemokines and cytokines responsible for the mobilization of these BMDCs, especially in breast cancer. Carbonic anhydrase IX (CAIX, CA9) expression is highly upregulated in hypoxic breast cancer cells through the action of hypoxia-inducible factor-1 (HIF1). Preclinical evidence has demonstrated that CAIX is required for breast tumor growth and metastasis; however, the mechanism by which CAIX exerts its prometastatic function is not well understood. Here, we show that CAIX is indispensable for the production of granulocyte colony-stimulating factor (G-CSF) by hypoxic breast cancer cells and tumors in an orthotopic model. Furthermore, we demonstrate that tumor-expressed CAIX is required for the G-CSF-driven mobilization of granulocytic myeloid-derived suppressor cells (MDSC) to the breast cancer lung metastatic niche. We also determined that CAIX expression is required for the activation of NF-κB in hypoxic breast cancer cells and constitutive activation of the NF-κB pathway in CAIX-depleted cells restored G-CSF secretion. Together, these findings identify a novel hypoxia-induced CAIX-NF-κB-G-CSF cellular signaling axis culminating in the mobilization of granulocytic MDSCs to the breast cancer lung metastatic niche.
Breast Cancer Research | 2011
Peter Chan; Andreas Möller; Mira C.P. Liu; Jaclyn Sceneay; Christina S.F. Wong; Nic Waddell; Katie T. Huang; Alexander Dobrovic; Ewan K.A. Millar; Sandra A O'Toole; Catriona M. McNeil; Robert L. Sutherland; David Bowtell; Stephen B. Fox
IntroductionThe seven in absentia homolog 2 (SIAH2) protein plays a significant role in the hypoxic response by regulating the abundance of hypoxia-inducible factor-α; however, its role in breast carcinoma is unclear. We investigated the frequency and expression pattern of SIAH2 in two independent cohorts of sporadic breast cancers.MethodsImmunohistochemical evaluation of SIAH2protein expression was conducted in normal breast tissues and in tissue microarrays comprising ductal carcinoma in situ (DCIS) and a cohort of invasive breast carcinomas. Correlation analysis was performed between SIAH2 and clinicopathological variables and intrinsic breast cancer subgroups and validated in a cohort of 293 invasive ductal carcinomas. Promoter methylation, gene copy number and mRNA expression of SIAH2 were determined in a panel of basal-like tumors and cell lines.ResultsThere was a significant increase in nuclear SIAH2 expression from normal breast tissues through to DCIS and progression to invasive cancers. A significant inverse correlation was apparent between SIAH2 and estrogen receptor and progesterone receptor and a positive association with tumor grade, HER2, p53 and an intrinsic basal-like subtype. Logistic regression analysis confirmed the significant positive association between SIAH2 expression and the basal-like phenotype. No SIAH2 promoter methylation was identified, yet there was a significant correlation between SIAH2 mRNA and gene copy number. SIAH2-positive tumors were associated with a shorter relapse-free survival in univariate but not multivariate analysis.ConclusionsSIAH2 expression is upregulated in basal-like breast cancers via copy number changes and/or transcriptional activation by p53 and is likely to be partly responsible for the enhanced hypoxic drive through abrogation of the prolyl hydroxylases.
PLOS ONE | 2013
Jaclyn Sceneay; Mira C.P. Liu; Anna Chen; Christina S.F. Wong; David Bowtell; Andreas Möller
Intratumoral hypoxia is a poor prognostic factor associated with reduced disease-free survival in many cancer types, including breast cancer. Hypoxia encourages tumor cell proliferation, stimulates angiogenesis and lymphangiogenesis, and promotes epithelial-mesenchymal transition and metastasis. Tumor cells respond to a hypoxic state by stabilizing the Hif-1α subunit of the Hypoxia-Inducible Factor (HIF) transcription factor to promote expression of various tumor- and metastasis-promoting hypoxic response genes. The antioxidant N-acetylcysteine (NAC) was recently shown to prevent Hif-1α stabilization under hypoxia, and has been identified as a potential alternative method to target the hypoxic response in tumors. We utilized three orthotopic syngeneic murine models of breast cancer, the PyMT, EO771 and 4T1.2 models, to investigate the ability of NAC to modulate the hypoxic response in vitro and in vivo. While NAC prevented Hif-1α stabilization under hypoxia in vitro and increased levels of glutathione in the blood of mice in vivo, this did not translate to a difference in tumor growth or the hypoxic state of the tumor compared to untreated control mice. In addition, NAC treatment actually increased metastatic burden in an experimental metastasis model. This work raises questions regarding the validity of NAC as an anti-tumorigenic agent in breast cancer, and highlights the need to further investigate its properties in vivo in different cancer models.
OncoImmunology | 2013
Jaclyn Sceneay; Belinda S. Parker; Mark J. Smyth; Andreas Möller
Primary tumor cells create favorable microenvironments in secondary organs, termed pre-metastatic niches, that promote the formation of metastases. Using immune competent syngenic breast cancer mouse models, we have recently demonstrated that factors secreted by hypoxic tumor cells condition pre-metastatic niches by recruiting CD11b+/Ly6Cmed/Ly6G+ myeloid cells and suppressing natural killer cell functions.
OncoImmunology | 2015
Camille Guillerey; Melvyn T. Chow; Kim Miles; Stuart D. Olver; Jaclyn Sceneay; Kazuyoshi Takeda; Andreas Möller; Mark J. Smyth
The Toll-like receptor 3 (TLR3) agonist poly(I:C) is a promising adjuvant for cancer vaccines due to its induction of potent antitumor responses occurring primarily through the activation of dendritic cells (DCs) and natural killer (NK) cells. However, little is known about the role of TLR3 sensing of endogenous ligands in innate tumor immunosurveillance. Here, we investigated whether TLR3 could modulate immune responses and facilitate tumor control without administration of an agonist. We observed only limited impact of TLR3 deficiency on spontaneous carcinogenesis and primary growth of B16F10, E0771 or MC38 tumors when injected subcutaneously to mice. Nevertheless, TLR3 was observed to limit experimental B16F10 lung metastasis, an immunologic constraint dependent on both IFNγ secretion and NK cells. Interestingly, we observed that NK cells derived from Tlr3 null (Tlr3−/−) mice were hyporesponsive to cytokine stimulation. Indeed, compared with NK cells with intact TLR3, Tlr3−/− NK cells produced significantly reduced pro-inflammatory cytokines, including IFNγ, when incubated in the presence of different combinations of IL-12, IL-18 and IL-15. Bone-marrow chimera experiments established that competent NK cell responses required TLR3 sensing on radio-sensitive immune cells. Intriguingly, although CD8α DCs robustly express high levels of TLR3, we found that those cells were not necessary for efficient IFNγ production by NK cells. Moreover, the defective NK cell phenotype of Tlr3−/− mice appeared to be independent of the gut microbiota. Altogether, our data demonstrate a pivotal role of endogenous TLR3 stimulation for the acquisition of full NK cell functions and immune protection against experimental metastasis.