Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacqueline E. Villalta is active.

Publication


Featured researches published by Jacqueline E. Villalta.


PLOS Genetics | 2013

Extensive Divergence of Transcription Factor Binding in Drosophila Embryos with Highly Conserved Gene Expression

Mathilde Paris; Tommy Kaplan; Xiao Yong Li; Jacqueline E. Villalta; Susan E. Lott; Michael B. Eisen

To better characterize how variation in regulatory sequences drives divergence in gene expression, we undertook a systematic study of transcription factor binding and gene expression in blastoderm embryos of four species, which sample much of the diversity in the 40 million-year old genus Drosophila: D. melanogaster, D. yakuba, D. pseudoobscura and D. virilis. We compared gene expression, measured by mRNA-seq, to the genome-wide binding, measured by ChIP-seq, of four transcription factors involved in early anterior-posterior patterning. We found that mRNA levels are much better conserved than individual transcription factor binding events, and that changes in a genes expression were poorly explained by changes in adjacent transcription factor binding. However, highly bound sites, sites in regions bound by multiple factors and sites near genes are conserved more frequently than other binding, suggesting that a considerable amount of transcription factor binding is weakly or non-functional and not subject to purifying selection.


eLife | 2014

Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition

Xiao-Yong Li; Melissa M. Harrison; Jacqueline E. Villalta; Tommy Kaplan; Michael B. Eisen

We describe the genome-wide distributions and temporal dynamics of nucleosomes and post-translational histone modifications throughout the maternal-to-zygotic transition in embryos of Drosophila melanogaster. At mitotic cycle 8, when few zygotic genes are being transcribed, embryonic chromatin is in a relatively simple state: there are few nucleosome free regions, undetectable levels of the histone methylation marks characteristic of mature chromatin, and low levels of histone acetylation at a relatively small number of loci. Histone acetylation increases by cycle 12, but it is not until cycle 14 that nucleosome free regions and domains of histone methylation become widespread. Early histone acetylation is strongly associated with regions that we have previously shown to be bound in early embryos by the maternally deposited transcription factor Zelda, suggesting that Zelda triggers a cascade of events, including the accumulation of specific histone modifications, that plays a role in the subsequent activation of these sequences. DOI: http://dx.doi.org/10.7554/eLife.03737.001


Science | 2017

CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells

S. John Liu; Max A. Horlbeck; Seung Woo Cho; Harjus Birk; Martina Malatesta; Daniel He; Frank J. Attenello; Jacqueline E. Villalta; Min Y. Cho; Yuwen Chen; Mohammad A. Mandegar; Michael P. Olvera; Luke A. Gilbert; Bruce R. Conklin; Howard Y. Chang; Jonathan S. Weissman; Daniel A. Lim

A very focused function for lncRNAs The human genome generates many thousands of long noncoding RNAs (lncRNAs). A very small number of lncRNAs have been shown to be functional. Liu et al. carried out a large-scale CRISPR-based screen to assess the function of ∼17,000 lncRNAs in seven different human cell lines. A considerable number (∼500) of the tested lncRNAs influenced cell growth, suggesting biological function. In almost all cases, though, the function was highly cell type—specific, often limited to just one cell type. Science, this issue p. 10.1126/science.aah7111 A considerable fraction of long noncoding RNAs have highly cell type–specific biological functions. INTRODUCTION The human genome contains tens of thousands of loci that produce long noncoding RNAs (lncRNAs), transcripts that have no apparent protein-coding potential. A subset of lncRNAs have been found to play critical roles in cellular processes, organismal development, and disease. Although these examples are suggestive of the importance and diversity of lncRNAs, the vast majority of lncRNA genes have not been functionally tested. RATIONALE Because it is currently not possible to predict which lncRNA loci are functional or what function they perform, there is a need for large-scale, systematic approaches to interrogating the functional contribution of lncRNA loci. We therefore developed a genome-scale screening platform based on CRISPR-mediated interference (CRISPRi), which uses a catalytically inactive CRISPR effector protein, (d)Cas9, fused to a repressive KRAB domain and targeted by a single guide RNA (sgRNA), to inhibit gene expression. By catalyzing repressive chromatin modifications around the transcription start site (TSS) and serving as a transcriptional roadblock, CRISPRi tests a broad range of lncRNA gene functions, including the production of cis- and trans-acting RNA transcripts, cis-mediated regulation related to lncRNA transcription itself, and enhancer-like function of some lncRNA loci. RESULTS We designed a CRISPRi Non-Coding Library (CRiNCL), which targets 16,401 lncRNA genes each with 10 sgRNAs per TSS, and applied this pooled screening approach to identify lncRNA genes that modify robust cell growth. We screened seven human cell lines, including six transformed cell lines and induced pluripotent stem cells (iPSCs), and identified 499 lncRNA loci that modified cell growth upon CRISPRi targeting; 372 and 299 of these loci were distal from any protein coding gene or mapped enhancer, respectively. Extensive validation confirmed the screen results and demonstrated the robust and specific performance of CRISPRi for repressing lncRNA transcription. Remarkably, 89% of the lncRNA gene hits modified growth in just one of the cell lines tested, and no hits were common to all seven cell lines. Although nearly all of the hit genes were expressed in the cell line in which they exhibited a growth phenotype, expression alone was insufficient to explain the cell type specificity of their function. Transcriptional profiling revealed extensive gene expression changes upon CRISPRi targeting of lncRNA loci in the cells in which they modified growth, whereas targeting the same lncRNA locus in other cell lines resulted in minimal changes to the transcriptome beyond depletion of the targeted lncRNA transcript itself. CONCLUSION Our study considerably increases the number of known functional lncRNA loci. More broadly, our CRISPRi approach enables mechanistic studies of specific lncRNA functions and, when applied systematically, supports the global exploration of the complex biology contained in the lncRNA-expressing genome. Finally, in contrast to recent studies that found that essential protein-coding genes typically are required across a broad range of cell types, we show that lncRNA function is highly cell type–specific, a finding that has important implications for their involvement in both normal biology and disease. CRISPRi screening of lncRNAs in human cells. CRISPRi can precisely repress transcription of lncRNAs. The CRISPRi Non-Coding Library (CRiNCL) was generated to interrogate the function of thousands of long noncoding RNAs in seven different cell lines. Validation studies confirmed the exquisite cell type–specific function of lncRNAs. The human genome produces thousands of long noncoding RNAs (lncRNAs)—transcripts >200 nucleotides long that do not encode proteins. Although critical roles in normal biology and disease have been revealed for a subset of lncRNAs, the function of the vast majority remains untested. We developed a CRISPR interference (CRISPRi) platform targeting 16,401 lncRNA loci in seven diverse cell lines, including six transformed cell lines and human induced pluripotent stem cells (iPSCs). Large-scale screening identified 499 lncRNA loci required for robust cellular growth, of which 89% showed growth-modifying function exclusively in one cell type. We further found that lncRNA knockdown can perturb complex transcriptional networks in a cell type–specific manner. These data underscore the functional importance and cell type specificity of many lncRNAs.


PLOS Biology | 2011

Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-Seq

Susan E. Lott; Jacqueline E. Villalta; Gary P. Schroth; Shujun Luo; Leath A. Tonkin; Michael B. Eisen

Mmany genes from the X chromosome are expressed at the same level in female and male embryos during early Drosophila development, prior to the establishment of MSL-mediated dosage compensation, suggesting the existence of a novel mechanism.


eLife | 2016

Nucleosomes impede Cas9 access to DNA in vivo and in vitro

Max A. Horlbeck; Lea B. Witkowsky; Benjamin Guglielmi; Joseph M Replogle; Luke A. Gilbert; Jacqueline E. Villalta; Sharon E Torigoe; Robert Tijan; Jonathan S. Weissman

The prokaryotic CRISPR (clustered regularly interspaced palindromic repeats)-associated protein, Cas9, has been widely adopted as a tool for editing, imaging, and regulating eukaryotic genomes. However, our understanding of how to select single-guide RNAs (sgRNAs) that mediate efficient Cas9 activity is incomplete, as we lack insight into how chromatin impacts Cas9 targeting. To address this gap, we analyzed large-scale genetic screens performed in human cell lines using either nuclease-active or nuclease-dead Cas9 (dCas9). We observed that highly active sgRNAs for Cas9 and dCas9 were found almost exclusively in regions of low nucleosome occupancy. In vitro experiments demonstrated that nucleosomes in fact directly impede Cas9 binding and cleavage, while chromatin remodeling can restore Cas9 access. Our results reveal a critical role of eukaryotic chromatin in dictating the targeting specificity of this transplanted bacterial enzyme, and provide rules for selecting Cas9 target sites distinct from and complementary to those based on sequence properties. DOI: http://dx.doi.org/10.7554/eLife.12677.001


Cell Stem Cell | 2016

CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs

Mohammad A. Mandegar; Nathaniel Huebsch; Frolov Eb; Shin E; Annie Truong; Michael P. Olvera; Amanda H. Chan; Yuichiro Miyaoka; Holmes K; Spencer Ci; Luke M. Judge; David E. Gordon; Tilde Eskildsen; Jacqueline E. Villalta; Max A. Horlbeck; Luke A. Gilbert; Nevan J. Krogan; Søren Paludan Sheikh; Jonathan S. Weissman; Lei S. Qi; Po-Lin So; Bruce R. Conklin

Developing technologies for efficient and scalable disruption of gene expression will provide powerful tools for studying gene function, developmental pathways, and disease mechanisms. Here, we develop clustered regularly interspaced short palindromic repeat interference (CRISPRi) to repress gene expression in human induced pluripotent stem cells (iPSCs). CRISPRi, in which a doxycycline-inducible deactivated Cas9 is fused to a KRAB repression domain, can specifically and reversibly inhibit gene expression in iPSCs and iPSC-derived cardiac progenitors, cardiomyocytes, and T lymphocytes. This gene repression system is tunable and has the potential to silence single alleles. Compared with CRISPR nuclease (CRISPRn), CRISPRi gene repression is more efficient and homogenous across cell populations. The CRISPRi system in iPSCs provides a powerful platform to perform genome-scale screens in a wide range of iPSC-derived cell types, dissect developmental pathways, and model disease.


eLife | 2016

Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation

Max A. Horlbeck; Luke A. Gilbert; Jacqueline E. Villalta; Britt Adamson; Ryan A. Pak; Yuwen Chen; Alexander P. Fields; Chong Yon Park; Jacob E. Corn; Martin Kampmann; Jonathan S. Weissman

We recently found that nucleosomes directly block access of CRISPR/Cas9 to DNA (Horlbeck et al., 2016). Here, we build on this observation with a comprehensive algorithm that incorporates chromatin, position, and sequence features to accurately predict highly effective single guide RNAs (sgRNAs) for targeting nuclease-dead Cas9-mediated transcriptional repression (CRISPRi) and activation (CRISPRa). We use this algorithm to design next-generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. A CRISPRi screen for essential genes in K562 cells demonstrates that the large majority of sgRNAs are highly active. We also find CRISPRi does not exhibit any detectable non-specific toxicity recently observed with CRISPR nuclease approaches. Precision-recall analysis shows that we detect over 90% of essential genes with minimal false positives using a compact 5 sgRNA/gene library. Our results establish CRISPRi and CRISPRa as premier tools for loss- or gain-of-function studies and provide a general strategy for identifying Cas9 target sites. DOI: http://dx.doi.org/10.7554/eLife.19760.001


Proceedings of the National Academy of Sciences of the United States of America | 2015

Next-generation libraries for robust RNA interference-based genome-wide screens

Martin Kampmann; Max A. Horlbeck; Yuwen Chen; Jordan C. Tsai; Michael C. Bassik; Luke A. Gilbert; Jacqueline E. Villalta; S. Chul Kwon; Hyeshik Chang; V. Narry Kim; Jonathan S. Weissman

Significance Genetic screening is a classic approach to identify genes acting in a biological process of interest. In mammalian cells, screens are commonly based on RNA interference (RNAi), in which a short interfering RNA (siRNA) or short-hairpin RNA (shRNA) triggers degradation of cellular messenger RNAs. RNAi approaches are prone to false-positive results because of siRNA/shRNA off-target effects and false-negative results because of siRNAs/shRNAs lacking activity. We previously established that these problems can be minimized with ultracomplex shRNA libraries. Here, we present next-generation shRNA libraries targeting the human and mouse genomes, for which we improved several features to increase shRNA activity. In a pilot screen, the new library yields complementary results to clustered regularly interspaced short palindromic repeats interference (CRISPRi), an orthogonal approach we developed recently. Genetic screening based on loss-of-function phenotypes is a powerful discovery tool in biology. Although the recent development of clustered regularly interspaced short palindromic repeats (CRISPR)-based screening approaches in mammalian cell culture has enormous potential, RNA interference (RNAi)-based screening remains the method of choice in several biological contexts. We previously demonstrated that ultracomplex pooled short-hairpin RNA (shRNA) libraries can largely overcome the problem of RNAi off-target effects in genome-wide screens. Here, we systematically optimize several aspects of our shRNA library, including the promoter and microRNA context for shRNA expression, selection of guide strands, and features relevant for postscreen sample preparation for deep sequencing. We present next-generation high-complexity libraries targeting human and mouse protein-coding genes, which we grouped into 12 sublibraries based on biological function. A pilot screen suggests that our next-generation RNAi library performs comparably to current CRISPR interference (CRISPRi)-based approaches and can yield complementary results with high sensitivity and high specificity.


Genome Research | 2015

Zelda is differentially required for chromatin accessibility, transcription-factor binding and gene expression in the early Drosophila embryo

Katharine N. Schulz; Eliana R. Bondra; Arbel Moshe; Jacqueline E. Villalta; Jason D. Lieb; Tommy Kaplan; Daniel J. McKay; Melissa M. Harrison

The transition from a specified germ cell to a population of pluripotent cells occurs rapidly following fertilization. During this developmental transition, the zygotic genome is largely transcriptionally quiescent and undergoes significant chromatin remodeling. In Drosophila, the DNA-binding protein Zelda (also known as Vielfaltig) is required for this transition and for transcriptional activation of the zygotic genome. Open chromatin is associated with Zelda-bound loci, as well as more generally with regions of active transcription. Nonetheless, the extent to which Zelda influences chromatin accessibility across the genome is largely unknown. Here we used formaldehyde-assisted isolation of regulatory elements to determine the role of Zelda in regulating regions of open chromatin in the early embryo. We demonstrate that Zelda is essential for hundreds of regions of open chromatin. This Zelda-mediated chromatin accessibility facilitates transcription-factor recruitment and early gene expression. Thus, Zelda possesses some key characteristics of a pioneer factor. Unexpectedly, chromatin at a large subset of Zelda-bound regions remains open even in the absence of Zelda. The GAGA factor-binding motif and embryonic GAGA factor binding are specifically enriched in these regions. We propose that both Zelda and GAGA factor function to specify sites of open chromatin and together facilitate the remodeling of the early embryonic genome.


PLOS Genetics | 2015

Sex Bias and Maternal Contribution to Gene Expression Divergence in Drosophila Blastoderm Embryos

Mathilde Paris; Jacqueline E. Villalta; Michael B. Eisen; Susan E. Lott

Early embryogenesis is a unique developmental stage where genetic control of development is handed off from mother to zygote. Yet the contribution of this transition to the evolution of gene expression is poorly understood. Here we study two aspects of gene expression specific to early embryogenesis in Drosophila: sex-biased gene expression prior to the onset of canonical X chromosomal dosage compensation, and the contribution of maternally supplied mRNAs. We sequenced mRNAs from individual unfertilized eggs and precisely staged and sexed blastoderm embryos, and compared levels between D. melanogaster, D. yakuba, D. pseudoobscura and D. virilis. First, we find that mRNA content is highly conserved for a given stage and that studies relying on pooled embryos likely systematically overstate the degree of gene expression divergence. Unlike studies done on larvae and adults where most species show a larger proportion of genes with male-biased expression, we find that transcripts in Drosophila embryos are largely female-biased in all species, likely due to incomplete dosage compensation prior to the activation of the canonical dosage compensation mechanism. The divergence of sex-biased gene expression across species is observed to be often due to lineage-specific decrease of expression; the most drastic example of which is the overall reduction of male expression from the neo-X chromosome in D. pseudoobscura, leading to a pervasive female-bias on this chromosome. We see no evidence for a faster evolution of expression on the X chromosome in embryos (no “faster-X” effect), unlike in adults, and contrary to a previous study on pooled non-sexed embryos. Finally, we find that most genes are conserved in regard to their maternal or zygotic origin of transcription, and present evidence that differences in maternal contribution to the blastoderm transcript pool may be due to species-specific divergence of transcript degradation rates.

Collaboration


Dive into the Jacqueline E. Villalta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan E. Lott

University of California

View shared research outputs
Top Co-Authors

Avatar

Yuwen Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Britt Adamson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tommy Kaplan

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge