Jacqueline M. Nolting
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacqueline M. Nolting.
PLOS Pathogens | 2008
Vivien G. Dugan; Rubing Chen; David J. Spiro; Naomi Sengamalay; Jennifer Zaborsky; Elodie Ghedin; Jacqueline M. Nolting; David E. Swayne; Jonathan A. Runstadler; G. M. Happ; Dennis A. Senne; Ruixue Wang; Richard D. Slemons; Edward C. Holmes; Jeffery K. Taubenberger
We surveyed the genetic diversity among avian influenza virus (AIV) in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA) and neuraminidase (NA) subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient “genome constellations,” continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses.
Archives of Virology | 2007
Jonathan A. Runstadler; G. M. Happ; Richard D. Slemons; Zong-Mei Sheng; N. Gundlach; Michael J. Petrula; Dennis A. Senne; Jacqueline M. Nolting; D. L. Evers; A. Modrell; S. Hills; T. Rothe; T. Marr; Jeffery K. Taubenberger
SummaryThis study describes surveillance for avian influenza viruses (AIV) in the Minto Flats State Game Refuge, high-density waterfowl breeding grounds in Alaska. Five hundred paired cloacal samples from dabbling ducks (Northern Pintail, Mallard, Green Wing Teal, and Widgeon) were placed into ethanol and viral transport medium (VTM). Additional ethanol-preserved samples were taken. Of the ethanol-preserved samples, 25.6% were AIV RNA-positive by real-time RT-PCR. The hemagglutinin (HA) and neuraminidase (NA) subtypes were determined for 38 of the first-passage isolates, and four first-passage isolates could not be definitively subtyped. Five influenza A virus HA–NA combinations were identified: H3N6, H3N8, H4N6, H8N4, and H12N5. Differences in the prevalence of AIV infections by sex and by age classes of Northern Pintail and Mallard ducks were detected, but the significance of these differences is undefined. In the 500 paired samples, molecular screening detected positive birds at a higher rate than viral isolation (χ2 = 8.35, p = 0.0035, df = 1); however, 20 AIV isolates were recovered from PCR-negative ducks. Further research is warranted to compare the two screening protocols’ potential for estimating true prevalence in wild birds. Our success during 2005 indicates Minto Flats will be a valuable study site for a longitudinal research project designed to gain further insight into the natural history, evolution, and ecology of AIV in wild birds.
Emerging Infectious Diseases | 2014
Andrew S. Bowman; Sarah W. Nelson; Shannon L. Page; Jacqueline M. Nolting; Mary Lea Killian; Srinand Sreevatsan; Richard D. Slemons
Local health care providers should be alerted to the possibility of human infection with variant influenza A viruses, especially during fairs.
Emerging Infectious Diseases | 2012
Andrew S. Bowman; Jacqueline M. Nolting; Sarah W. Nelson; Richard D. Slemons
Close contact between pigs and humans could result in zoonotic transmission.
Emerging microbes & infections | 2012
Andrew S. Bowman; Srinand Sreevatsan; Mary Lea Killian; Shannon L. Page; Sarah W. Nelson; Jacqueline M. Nolting; Carol J. Cardona; Richard D. Slemons
Evidence accumulating in 2011–2012 indicates that there is significant intra- and inter-species transmission of influenza A viruses at agricultural fairs, which has renewed interest in this unique human/swine interface. Six human cases of influenza A (H3N2) variant (H3N2v) virus infections were epidemiologically linked to swine exposure at fairs in the United States in 2011. In 2012, the number of H3N2v cases in the Midwest had exceeded 300 from early July to September, 2012. Prospective influenza A virus surveillance among pigs at Ohio fairs resulted in the detection of H3N2pM (H3N2 influenza A viruses containing the matrix (M) gene from the influenza A (H1N1) pdm09 virus). These H3N2pM viruses were temporally and spatially linked to several human H3N2v cases. Complete genomic analyses of these H3N2pM isolates demonstrated >99% nucleotide similarity to the H3N2v isolates recovered from human cases. Actions to mitigate the bidirectional interspecies transmission of influenza A virus between people and animals at agricultural fairs may be warranted.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Scott Krauss; David E. Stallknecht; Richard D. Slemons; Andrew S. Bowman; Rebecca L. Poulson; Jacqueline M. Nolting; James Knowles; Robert G. Webster
Significance The role of wild aquatic birds in perpetuating highly pathogenic avian influenza viruses (HPAIVs) is unresolved. We examined whether the subtype H5 clade 2.3.4.4 HPAIV that devastated the US poultry industry in 2015 is perpetuated in wild aquatic birds. Virologic surveillance in 2014/15 and over the previous 43 y failed to detect HPAIVs in wild aquatic birds before or after the poultry outbreak, supporting the premise that there are unresolved mechanisms preventing wild aquatic birds from perpetuating HPAIVs. The significance of these findings is that timely and efficient strategies used to successfully prevent and eradicate HPAIVs infecting poultry, without the use of vaccines, appear to complement natural biological mechanisms in disrupting the perpetuation and possible spread of HPAIVs by wild aquatic birds. One of the major unresolved questions in influenza A virus (IAV) ecology is exemplified by the apparent disappearance of highly pathogenic (HP) H5N1, H5N2, and H5N8 (H5Nx) viruses containing the Eurasian hemagglutinin 2.3.4.4 clade from wild bird populations in North America. The introduction of Eurasian lineage HP H5 clade 2.3.4.4 H5N8 IAV and subsequent reassortment with low-pathogenic H?N2 and H?N1 North American wild bird-origin IAVs in late 2014 resulted in widespread HP H5Nx IAV infections and outbreaks in poultry and wild birds across two-thirds of North America starting in November 2014 and continuing through June 2015. Although the stamping out strategies adopted by the poultry industry and animal health authorities in Canada and the United States—which included culling, quarantining, increased biosecurity, and abstention from vaccine use—were successful in eradicating the HP H5Nx viruses from poultry, these activities do not explain the apparent disappearance of these viruses from migratory waterfowl. Here we examine current and historical aquatic bird IAV surveillance and outbreaks of HP H5Nx in poultry in the United States and Canada, providing additional evidence of unresolved mechanisms that restrict the emergence and perpetuation of HP avian influenza viruses in these natural reservoirs.
Journal of Virology | 2013
Zhixin Feng; Janet Gomez; Andrew S. Bowman; Jianqiang Ye; Li Ping Long; Sarah W. Nelson; Jialiang Yang; Brigitte E. Martin; Kun Jia; Jacqueline M. Nolting; Fred L. Cunningham; Carol J. Cardona; Jianqiang Zhang; Kyoung Jin Yoon; Richard D. Slemons; Xiu-Feng Wan
ABSTRACT The demonstrated link between the emergence of H3N2 variant (H3N2v) influenza A viruses (IAVs) and swine exposure at agricultural fairs has raised concerns about the human health risk posed by IAV-infected swine. Understanding the antigenic profiles of IAVs circulating in pigs at agricultural fairs is critical to developing effective prevention and control strategies. Here, 68 H3N2 IAV isolates recovered from pigs at Ohio fairs (2009 to 2011) were antigenically characterized. These isolates were compared with other H3 IAVs recovered from commercial swine, wild birds, and canines, along with human seasonal and variant H3N2 IAVs. Antigenic cartography demonstrated that H3N2 IAV isolates from Ohio fairs could be divided into two antigenic groups: (i) the 2009 fair isolates and (ii) the 2010 and 2011 fair isolates. These same two antigenic clusters have also been observed in commercial swine populations in recent years. Human H3N2v isolates from 2010 and 2011 are antigenically clustered with swine-origin IAVs from the same time period. The isolates recovered from pigs at fairs did not cross-react with ferret antisera produced against the human seasonal H3N2 IAVs circulating during the past decade, raising the question of the degree of immunity that the human population has to swine-origin H3N2 IAVs. Our results demonstrate that H3N2 IAVs infecting pigs at fairs and H3N2v isolates were antigenically similar to the IAVs circulating in commercial swine, demonstrating that exhibition swine can function as a bridge between commercial swine and the human population.
PLOS Currents | 2012
Jacqueline M. Nolting; Anthony C. Fries; Richard D. Slemons; Chad Courtney; Nichole L. Hines; Janice C. Pedersen
In 2010, H14 influenza A viruses were recovered from clinically normal sea ducks in the United States. These are the first H14 isolates recovered in the Western Hemisphere and represent the only documented H14 influenza A viruses isolated since the original isolates were recovered from near the Caspian Sea during 1982.
Veterinary Microbiology | 2015
Andrew S. Bowman; Jacqueline M. Nolting; Sarah W. Nelson; Nola T. Bliss; Jason W. Stull; Qiuhong Wang; Christopher Premanandan
Abstract Routine detection of porcine epidemic diarrhea virus (PEDV) is currently limited to RT-PCR but this test cannot distinguish between viable and inactivated virus. We evaluated the capability of disinfectants to both inactivate PEDV and sufficiently damage viral RNA beyond RT-PCR detection. Five classes of disinfectants (phenol, quaternary ammonium compound, sodium hypochlorite, oxidizing agent, and quaternary ammonium/glutaraldehyde combination) were evaluated in vitro at varying concentrations, both in the presence and absence of swine feces, and at three different temperatures. No infectious PEDV was recovered after treatment with evaluated disinfectants. Additionally, all tested disinfectants except for 0.17% sodium hypochlorite dramatically reduced qRT-PCR values. However, no disinfectants eliminated RT-PCR detection of PEDV across all replicates; although, 0.52%, 1.03% and 2.06% solutions of sodium hypochlorite and 0.5% oxidizing agent did intermittently produce RT-PCR negatives. To simulate field conditions in a second aim, PEDV was applied to pitted aluminum coupons, which were then treated with either 2.06% sodium hypochlorite or 0.5% oxidizing agent. Post-treatment surface swabs of the coupons tested RT-PCR positive but were not infectious to cultured cells or naïve pigs. Ultimately, viable PEDV was not detected following application of each of the tested disinfectants, however in most cases RT-PCR detection of viral RNA remained. RT-PCR detection of PEDV is likely even after disinfection with many commercially available disinfectants.
Influenza and Other Respiratory Viruses | 2014
Anthony C. Fries; Jacqueline M. Nolting; Andrew S. Bowman; Mary Lea Killian; David E. Wentworth; Richard D. Slemons
The accurate and timely characterization of influenza A viruses (IAV) from natural reservoirs is essential for responses to animal and public health threats. Differences between antigenic and genetic subtyping results for 161 IAV isolates recovered from migratory birds in the central United States during 2010–2011 delayed the recognition of four isolates of interest. Genomic sequencing identified the first reported Eurasian‐origin H10 subtype in North America and three additional H14 isolates showing divergence from previously reported H14 isolates. Genomic analyses revealed additional diversity among IAV isolates not detected by antigenic subtyping and provided further insight into interhemispheric spread of avian‐origin IAVs.
Collaboration
Dive into the Jacqueline M. Nolting's collaboration.
National Center for Immunization and Respiratory Diseases
View shared research outputs