Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacques J. Tremblay is active.

Publication


Featured researches published by Jacques J. Tremblay.


Molecular and Cellular Biology | 1999

Egr-1 Is a Downstream Effector of GnRH and Synergizes by Direct Interaction with Ptx1 and SF-1 To Enhance Luteinizing Hormone β Gene Transcription

Jacques J. Tremblay; Jacques Drouin

ABSTRACT Pituitary gonadotropins are critical regulators of gonadal development and function. Expression and secretion of the mature hormones are regulated by gonadotropin-releasing hormone (GnRH), which is itself secreted from the hypothalamus. GnRH stimulation of gonadotropin expression and secretion occurs through the G-protein-linked phospholipase C/inositol triphosphate intracellular signaling pathway, which ultimately leads to protein kinase C (PKC) activation and increased intracellular calcium levels. Transcription factors mediating the effects of GnRH-induced signals on transcription of gonadotropin genes have not yet been identified. Recent studies have identified key factors involved in luteinizing hormone β (LHβ) gonadotropin gene transcription: the nuclear receptor SF-1, thebicoid-related homeoprotein Ptx1 (Pitx1), and the immediate-early Egr-1 gene. We now show that GnRH is a potent stimulator of Egr-1, but not Ptx1 or SF-1, expression. Further, Egr-1 activation of the LHβ promoter is specifically enhanced by PKC, in agreement with a role for Egr-1 in mediating a GnRH effect on transcription. Egr-1 interacts directly with Ptx1 and with SF-1, leading to an enhancement of Ptx1- and SF-1-induced LHβ transcription. Thus, Egr-1 is a likely transcriptional mediator of GnRH-induced signals for activation of the LHβ gene.


The EMBO Journal | 1999

Ptx1 regulates SF-1 activity by an interaction that mimics the role of the ligand-binding domain

Jacques J. Tremblay; Alexandre Marcil; Yves Gauthier; Jacques Drouin

Ptx1 (Pitx1) is a bicoid‐related homeobox transcription factor expressed from the onset of pituitary development. It was shown to cooperate with cell‐restricted factors, such as Pit1, NeuroD1/PanI and steroidogenic factor 1 (SF‐1), to establish a combinatorial code conferring lineage‐ and promoter‐specific gene transcription in the pituitary. Transcriptional synergism between Ptx1 and SF‐1 on two SF‐1 target genes, pituitary luteinizing hormone β and Müllerian‐inhibiting substance (MIS), requires SF‐1 binding to DNA and appears to result from direct physical interaction between these two proteins. The interaction between the C‐terminus of Ptx1 and the N‐terminal half of SF‐1 results in transcriptional enhancement that equals the activity of a constitutively active SF‐1 mutant and that may mimic the effect of a still unidentified SF‐1 ligand. Thus, the unmasking of SF‐1 activity by Ptx1 may represent a developmental mechanism to alleviate the need for SF‐1 ligand in transcription and, possibly, at critical times during organogenesis.


Molecular and Cellular Endocrinology | 1998

The PTX family of homeodomain transcription factors during pituitary developments.

Jacques Drouin; Bruno Lamolet; Thomas Lamonerie; Christian Lanctôt; Jacques J. Tremblay

A subfamily of bicoid-related homeodomain factors was recently discovered through its involvement in transcription of pituitary-specific genes. We isolated the first member of this family, Ptxl (pituitary homeobox 1), through its DNA binding properties whereas a second related gene, Ptx2 (RIEG), was identified by positional cloning as the causative gene for Riegers syndrome. The mechanisms of Ptx action on its target genes as well as its putative roles during development are reviewed with particular emphasis on its role in pituitary function.


Biology of Reproduction | 2001

Nuclear Receptor Dax-1 Represses the Transcriptional Cooperation Between GATA-4 and SF-1 in Sertoli Cells

Jacques J. Tremblay; Robert S. Viger

Abstract A crucial step in mammalian sex differentiation is the regression of the Müllerian ducts in males. This is achieved through the action of Müllerian inhibiting substance (MIS), a key hormone produced by fetal Sertoli cells. Proper spatiotemporal expression of the MIS gene requires the concerted action of several transcription factors that include Sox9, SF-1, WT-1, GATA-4, and Dax-1. Indeed, SF-1 contributes to MIS gene expression by transcriptionally cooperating with other factors such as GATA-4 and WT-1. Dax-1 is coexpressed with SF-1 in many tissues, including the gonads, where it acts as a negative modulator of SF-1-dependent transcription. We now report that Dax-1 can repress MIS transcription in Sertoli cells by disrupting transcriptional synergism between GATA-4 and SF-1. Dax-1-mediated repression of GATA-4/SF-1 synergism did not involve direct repression of GATA-dependent transactivation, but rather, it occurred through a direct protein-protein interaction with DNA-bound SF-1. It is interesting that SF-1, Dax-1, and GATA factors are coexpressed in several tissues such as the pituitary, the adrenals, and the gonads. Because we have shown that other GATA family members also have the ability to synergize with SF-1, Dax-1 repression of GATA/SF-1 synergism may represent an important mechanism for fine-tuning the regulation of SF-1-dependent genes in multiple target tissues.


Neuroendocrinology | 2000

Transcriptional Properties of Ptx1 and Ptx2 Isoforms

Jacques J. Tremblay; Cynthia G. Goodyer; Jacques Drouin

The Ptx (Pitx) family of homeobox transcription factors comprises Ptx1, Ptx2 and Ptx3. Ptx1 and Ptx2 are expressed in the stomodeum and its derivatives including the pituitary, as well as in mesodermal derivatives, whereas Ptx3 is expressed in one neuronal lineage of the brain and in the eyes. A large set of downstream target genes have been identified for Ptx1 in the pituitary gland where it acts as a pan-pituitary regulator of transcription. In particular, Ptx1 contributes to promoter- and lineage-specific transcription by interaction with cell-restricted factors such as SF-1, Egr-1, Pit1, and the basic helix-loop-helix heterodimer NeuroD1/Pan1. We describe the cloning from pituitary cells and the characterization of a Ptx1 isoform, named Ptx1b, generated by alternative promoter usage. The two Ptx1 and two Ptx2 isoforms have similar in vitro DNA binding specificities and they all activate transcription driven by a panel of pituitary promoters, including those for proopiomelanocortin, αGSU, LHβ, FSHβ, GnRH-R, TSHβ, PRL, and GH. Also like Ptx1, the Ptx1b, Ptx2a, and Ptx2b transcription factors synergize with the structurally unrelated factors SF-1, Egr-1, Pit1, and NeuroD1/Pan1 to activate promoter-specific transcription. In conclusion, the pituitary transcriptional activities of the four Ptx isoforms do not appear to be dependent on the variant N-termini of these factors.


The Journal of Steroid Biochemistry and Molecular Biology | 2003

Novel roles for GATA transcription factors in the regulation of steroidogenesis.

Jacques J. Tremblay; Robert S. Viger

Steroidogenesis is a tightly regulated process that is dependent on pituitary hormones. In steroidogenic tissues, hormonal stimulation triggers activation of an intracellular signalling pathway that typically involves cAMP production, activation of PKA, and phosphorylation of target transcription factors. In the classic cAMP signalling pathway, phosphorylation of CREB (cAMP response element (CRE)-binding protein) and its subsequent binding to cAMP-response elements (CREs) in the regulatory regions of target genes play a key role in mediating cAMP responsiveness. However, the cAMP responsive regions of several genes expressed in steroidogenic tissues do not contain consensus CREs indicating that other transcription factors are also involved. We have been studying the role played by the GATA family of transcription factors. GATA factors are expressed in a variety of tissues including the adrenals and gonads. Since the regulatory regions of several steroidogenic genes contain GATA elements, we have proposed that GATA factors, particularly GATA-4 and GATA-6, might represent novel downstream effectors of hormonal signalling in steroidogenic tissues. In vitro experiments have revealed that GATA-4 is indeed phosphorylated in steroidogenic cells and that phosphorylation levels are rapidly induced by cAMP. GATA-4 phosphorylation is mediated by PKA. Phosphorylation increases GATA-4 DNA-binding activity and enhances its transcriptional properties on multiple steroidogenic promoters. We now define a new molecular mechanism whereby phospho-GATA factors contribute to increased transcription of steroidogenic genes in response to hormonal stimulation.


Molecular Endocrinology | 2008

The Orphan Nuclear Receptor NUR77 Regulates Hormone-Induced StAR Transcription in Leydig Cells through Cooperation with Ca2+/Calmodulin-Dependent Protein Kinase I

Luc J. Martin; Nicolas Boucher; Catherine Brousseau; Jacques J. Tremblay

Cholesterol transport in the mitochondrial membrane, an essential step of steroid biosynthesis, is mediated by a protein complex containing the steroidogenic acute regulatory (StAR) protein. The importance of this transporter is underscored by mutations in the human StAR gene that cause lipoid congenital adrenal hyperplasia, male pseudohermaphroditism, and adrenal insufficiency. StAR transcription in steroidogenic cells is hormonally regulated and involves several transcription factors. The nuclear receptor NUR77 is present in steroidogenic cells, and its expression is induced by hormones known to activate StAR expression. We have now established that StAR transcription in cAMP-stimulated Leydig cells requires de novo protein synthesis and involves NUR77. We found that cAMP-induced NUR77 expression precedes that of StAR both at the mRNA and protein levels in Leydig cells. In these cells, small interfering RNA-mediated NUR77 knockdown reduces cAMP-induced StAR expression. Chromatin immunoprecipitation assays revealed a cAMP-dependent increase in NUR77 recruitment to the proximal StAR promoter, whereas transient transfections in MA-10 Leydig cells confirmed that NUR77 can activate the StAR promoter and that this requires an element located at -95 bp. cAMP-induced StAR and NUR77 expression in Leydig cells was found to require a Ca2+/calmodulin-dependent protein kinase (CaMK)-dependent signaling pathway. Consistent with this, we show that within the testis, CaMKI is specifically expressed in Leydig cells. Finally, we report that CaMKI transcriptionally cooperates with NUR77, but not steroidogenic factor 1, to further enhance StAR promoter activity in Leydig cells. All together, our results implicate NUR77 as a mediator of cAMP action on StAR transcription in steroidogenic Leydig cells and identify a role for CaMKI in this process.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA

Anne-Claire Duchez; Luc H. Boudreau; Gajendra S. Naika; James G. Bollinger; Clémence Belleannée; Nathalie Cloutier; Benoit Laffont; Raifish E. Mendoza-Villarroel; Tania Lévesque; Emmanuelle Rollet-Labelle; Matthieu Rousseau; Isabelle Allaeys; Jacques J. Tremblay; Patrice E. Poubelle; Gérard Lambeau; Marc Pouliot; Patrick Provost; Denis Soulet; Michael H. Gelb; Eric Boilard

Significance On activation, blood platelets package components from their cytoplasm into microparticles (MPs), tiny vesicles released by cytoplasmic membrane budding and shedding. Given that MPs can impact other cellular lineages on internalization, we aimed to decipher the mechanisms promoting MP internalization by cellular recipients. We modeled MP internalization by neutrophils and identified a predominant lipid, 12(S)-hydroxyeicosatetranoic acid, as a mediator critical for the promotion of MP internalization. MPs were found inside neutrophils from individuals with rheumatoid arthritis, and their presence in neutrophils in the joints of mice treated with arthritogenic serum is dependent on the expression of enzymes implicated in the generation of 12(S)-hydroxyeicosatetranoic acid. These findings reveal a unique molecular mechanism implicated in MP internalization relevant to inflammatory processes. Platelets are anucleated blood elements highly potent at generating extracellular vesicles (EVs) called microparticles (MPs). Whereas EVs are accepted as an important means of intercellular communication, the mechanisms underlying platelet MP internalization in recipient cells are poorly understood. Our lipidomic analyses identified 12(S)-hydroxyeicosatetranoic acid [12(S)-HETE] as the predominant eicosanoid generated by MPs. Mechanistically, 12(S)-HETE is produced through the concerted activity of secreted phospholipase A2 IIA (sPLA2-IIA), present in inflammatory fluids, and platelet-type 12-lipoxygenase (12-LO), expressed by platelet MPs. Platelet MPs convey an elaborate set of transcription factors and nucleic acids, and contain mitochondria. We observed that MPs and their cargo are internalized by activated neutrophils in the endomembrane system via 12(S)-HETE. Platelet MPs are found inside neutrophils isolated from the joints of arthritic patients, and are found in neutrophils only in the presence of sPLA2-IIA and 12-LO in an in vivo model of autoimmune inflammatory arthritis. Using a combination of genetically modified mice, we show that the coordinated action of sPLA2-IIA and 12-LO promotes inflammatory arthritis. These findings identify 12(S)-HETE as a trigger of platelet MP internalization by neutrophils, a mechanism highly relevant to inflammatory processes. Because sPLA2-IIA is induced during inflammation, and 12-LO expression is restricted mainly to platelets, these observations demonstrate that platelet MPs promote their internalization in recipient cells through highly regulated mechanisms.


Endocrinology | 2008

Antagonistic Effects of Testosterone and the Endocrine Disruptor Mono-(2-Ethylhexyl) Phthalate on INSL3 Transcription in Leydig Cells

Éric Laguë; Jacques J. Tremblay

Insulin-like 3 (INSL3) is a small peptide produced by testicular Leydig cells throughout embryonic and postnatal life and by theca and luteal cells of the adult ovary. During fetal life, INSL3 regulates testicular descent in males, whereas in adults, it acts as an antiapoptotic factor for germ cells in males and as a follicle selection and survival factor in females. Despite its considerable roles in the reproductive system, the mechanisms that regulate Insl3 expression remain poorly understood. There is accumulating evidence suggesting that androgens might regulate Insl3 expression in Leydig cells, but transcriptional data are still lacking. We now report that testosterone does increase Insl3 mRNA levels in a Leydig cell line and primary Leydig cells. We also show that testosterone activates the activity of the Insl3 promoter from different species. In addition, the testosterone-stimulating effects on Insl3 mRNA levels and promoter activity require the androgen receptor. We have mapped the testosterone-responsive element to the proximal Insl3 promoter region. This region, however, lacks a consensus androgen response element, suggesting an indirect mechanism of action. Finally we show that mono-(2-ethylhexyl) phthalate, a widely distributed endocrine disruptor with antiandrogenic activity previously shown to inhibit Insl3 expression in vivo, represses Insl3 transcription, at least in part, by antagonizing testosterone/androgen receptor action. All together our data provide important new insights into the regulation of Insl3 transcription in Leydig cells and the mode of action of phthalates.


Journal of Molecular Endocrinology | 2008

The nuclear receptors NUR77 and SF1 play additive roles with c-JUN through distinct elements on the mouse Star promoter

Luc J. Martin; Jacques J. Tremblay

The steroidogenic acute regulatory protein plays an essential role in steroid biosynthesis in steroidogenic cells. It is involved in the transport of cholesterol through the mitochondrial membrane where the first step of steroidogenesis occurs. Star gene expression in testicular Leydig cells is regulated by the pituitary LH through the cAMP signaling pathway. So far, several transcription factors have been implicated in the regulation of Star promoter activity in these cells. These include the nuclear receptors NUR77 and SF1, AP-1 family members (particularly c-JUN), GATA4, C/EBPbeta, DLX5/6, and CREB. Some of these factors were also shown to act in a cooperative manner to further enhance Star promoter activity. Here, we report that NUR77 and c-JUN have additive effects on the Star promoter. These effects were abolished only when both elements, NUR77 at -95 bp and AP-1 at -78 bp, were mutated. Consistent with this, in vitro co-immunoprecipitation revealed that NUR77 and c-JUN interact and that this interaction is mediated through part of the ligand binding domain of NUR77. Furthermore, we found that SF1 could cooperate with c-JUN on the mouse Star promoter but this cooperation involved different regulatory elements. Collectively, our data not only provide new insights into the molecular mechanisms that control mouse Star transcription in Leydig cells but also reveal a novel mechanism for the regulation of NR4A1-dependent genes in tissues where NUR77 and c-JUN factors are co-expressed.

Collaboration


Dive into the Jacques J. Tremblay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge